30 research outputs found

    Modular AWG-based Optical Shuffle Network

    Full text link
    This paper proposes an arrayed-waveguide grating (AWG) based wavelength-division-multiplexing (WDM) shuffle network. Compared with previous optical shuffle networks, our proposal is compact, easy to implement, highly scalable, and cost effective

    On the Energy Efficiency of MapReduce Shuffling Operations in Data Centers

    Get PDF
    This paper aims to quantitatively measure the impact of different data centers networking topologies on the performance and energy efficiency of shuffling operations in MapReduce. Mixed Integer Linear Programming (MILP) models are utilized to optimize the shuffling in several data center topologies with electronic, hybrid, and all-optical switching while maximizing the throughput and reducing the power consumption. The results indicate that the networking topology has a significant impact on the performance of MapReduce. They also indicate that with comparable performance, optical-based data centers can achieve an average of 54% reduction in the energy consumption when compared to electronic switching data centers

    Optical Switching for Scalable Data Centre Networks

    Get PDF
    This thesis explores the use of wavelength tuneable transmitters and control systems within the context of scalable, optically switched data centre networks. Modern data centres require innovative networking solutions to meet their growing power, bandwidth, and scalability requirements. Wavelength routed optical burst switching (WROBS) can meet these demands by applying agile wavelength tuneable transmitters at the edge of a passive network fabric. Through experimental investigation of an example WROBS network, the transmitter is shown to determine system performance, and must support ultra-fast switching as well as power efficient transmission. This thesis describes an intelligent optical transmitter capable of wideband sub-nanosecond wavelength switching and low-loss modulation. A regression optimiser is introduced that applies frequency-domain feedback to automatically enable fast tuneable laser reconfiguration. Through simulation and experiment, the optimised laser is shown to support 122脳50 GHz channels, switching in less than 10 ns. The laser is deployed as a component within a new wavelength tuneable source (WTS) composed of two time-interleaved tuneable lasers and two semiconductor optical amplifiers. Switching over 6.05 THz is demonstrated, with stable switch times of 547 ps, a record result. The WTS scales well in terms of chip-space and bandwidth, constituting the first demonstration of scalable, sub-nanosecond optical switching. The power efficiency of the intelligent optical transmitter is further improved by introduction of a novel low-loss split-carrier modulator. The design is evaluated using 112 Gb/s/位 intensity modulated, direct-detection signals and a single-ended photodiode receiver. The split-carrier transmitter is shown to achieve hard decision forward error correction ready performance after 2 km of transmission using a laser output power of just 0 dBm; a 5.2 dB improvement over the conventional transmitter. The results achieved in the course of this research allow for ultra-fast, wideband, intelligent optical transmitters that can be applied in the design of all-optical data centres for power efficient, scalable networking

    Semiconductor Optical Amplifier-based Photonic Integrated Deep Neural Networks

    Get PDF

    Future Energy Efficient Data Centers With Disaggregated Servers

    Get PDF
    The popularity of the Internet and the demand for 24/7 services uptime is driving system performance and reliability requirements to levels that today's data centers can no longer support. This paper examines the traditional monolithic conventional server (CS) design and compares it to a new design paradigm: the disaggregated server (DS) data center design. The DS design arranges data centers resources in physical pools, such as processing, memory, and IO module pools, rather than packing each subset of such resources into a single server box. In this paper, we study energy efficient resource provisioning and virtual machine (VM) allocation in DS-based data centers compared to CS-based data centers. First, we present our new design for the photonic DS-based data center architecture, supplemented with a complete description of the architectural components. Second, we develop a mixed integer linear programming (MILP) model to optimize VM allocation for the DS-based data center, including the data center communication fabric power consumption. Our results indicate that, in DS data centers, the optimum allocation of pooled resources and their communication power yields up to 42% average savings in total power consumption when compared with the CS approach. Due to the MILP high computational complexity, we developed an energy efficient resource provisioning heuristic for DS with communication fabric (EERP-DSCF), based on the MILP model insights, with comparable power efficiency to the MILP model. With EERP-DSCF, we can extend the number of served VMs, where the MILP model scalability for a large number of VMs is challenging. Furthermore, we assess the energy efficiency of the DS design under stringent conditions by increasing the CPU to memory traffic and by including high noncommunication power consumption to determine the conditions at which the DS and CS designs become comparable in power consumption. Finally, we present a complete analysis of the communication patterns in our new DS design and some recommendations for design and implementation challenges

    Contribuci贸n a la conmutaci贸n 贸ptica de paquetes : arquitecturas, evaluaci贸n de prestaciones y an谩lisis comparativo

    Get PDF
    La aplicaci贸n de la Conmutaci贸n 脫ptica de Paquetes (Optical Packet Switching, OPS) en la red troncal WDM, es observada por las empresas operadoras de la red como una alternativa viable y prometedora en el medio plazo, cuando la tecnolog铆a de dispositivos fot贸nicos alcance la madurez necesaria. Esta tesis doctoral se centra en la evaluaci贸n de prestaciones de arquitecturas de conmutaci贸n (switch fabric) 贸ptica de paquetes, que son los componentes cr铆ticos en coste para que esta alternativa sea viable. El trabajo comienza estableciendo una clasificaci贸n de las arquitecturas OPS en funci贸n del modo de operaci贸n (SHWP, Shared Wavelength Path) y SCWP (Scattered Wavelength Path) de la red. La raz贸n reside en que SHWP y SCWP son los candidatos previsibles para el control de una futura red troncal OPS. En algunos casos, ha sido necesario aplicar un proceso de adaptaci贸n a distintas arquitecturas, no dise帽adas originalmente para trabajar bajo ning煤n modo SHWP/SCWP. Este proceso de adaptaci贸n ha permitido la evaluaci贸n comparativa de prestaciones entre arquitecturas y modos de operaci贸n de manera sistem谩tica, algo no relacionado hasta la fecha.Universidad Polit茅cnica de Cartagen

    Evaluation of data centre networks and future directions

    Get PDF
    Traffic forecasts predict a more than threefold increase in the global datacentre workload in coming years, caused by the increasing adoption of cloud and data-intensive applications. Consequently, there has been an unprecedented need for ultra-high throughput and minimal latency. Currently deployed hierarchical architectures using electronic packet switching technologies are costly and energy-inefficient. Very high capacity switches are required to satisfy the enormous bandwidth requirements of cloud datacentres and this limits the overall network scalability. With the maturity of photonic components, turning to optical switching in data centres is a viable option to accommodate greater bandwidth and network flexibility while potentially minimising the latency, cost and power consumption. Various DCN architectures have been proposed to date and this thesis includes a comparative analysis of such electronic and optical topologies to judge their suitability based on network performance parameters and cost/energy effectiveness, while identifying the challenges faced by recent DCN infrastructures. An analytical Layer 2 switching model is introduced that can alleviate the simulation scalability problem and evaluate the performance of the underlying DCN architecture. This model is also used to judge the variation in traffic arrival/offloading at the intermediate queueing stages and the findings are used to derive closed form expressions for traffic arrival rates and delay. The results from the simulated network demonstrate the impact of buffering and versubscription and reveal the potential bottlenecks and network design tradeoffs. TCP traffic forms the bulk of current DCN workload and so the designed network is further modified to include TCP flows generated from a realistic traffic generator for assessing the impact of Layer 4 congestion control on the DCN performance with standard TCP and datacentre specific TCP protocols (DCTCP). Optical DCN architectures mostly concentrate on core-tier switching. However, substantial energy saving is possible by introducing optics in the edge tiers. Hence, a new approach to optical switching is introduced using Optical ToR switches which can offer better delay performance than commodity switches of similiar size, while having far less power dissipation. An all-optical topology has been further outlined for the efficient implementation of the optical switch meeting the future scalability demands
    corecore