9,844 research outputs found

    The MC@NLO 2.2 Event Generator

    Get PDF
    This is the user's manual of MC@NLO 2.2. This package is a practical implementation, based upon the HERWIG event generator, of the MC@NLO formalism, which allows one to incorporate NLO QCD matrix elements consistently into a parton shower framework. Processes available in this version include the hadroproduction of Higgs bosons, single vector bosons, vector boson pairs, and heavy quark-antiquark pairs. This document is self-contained, but we emphasise the main differences with respect to previous versions.Comment: 17 pages, no figures. Version 2 has more details on some features. Program available at http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

    Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study

    Full text link
    Developing robot agnostic software frameworks involves synthesizing the disparate fields of robotic theory and software engineering while simultaneously accounting for a large variability in hardware designs and control paradigms. As the capabilities of robotic software frameworks increase, the setup difficulty and learning curve for new users also increase. If the entry barriers for configuring and using the software on robots is too high, even the most powerful of frameworks are useless. A growing need exists in robotic software engineering to aid users in getting started with, and customizing, the software framework as necessary for particular robotic applications. In this paper a case study is presented for the best practices found for lowering the barrier of entry in the MoveIt! framework, an open-source tool for mobile manipulation in ROS, that allows users to 1) quickly get basic motion planning functionality with minimal initial setup, 2) automate its configuration and optimization, and 3) easily customize its components. A graphical interface that assists the user in configuring MoveIt! is the cornerstone of our approach, coupled with the use of an existing standardized robot model for input, automatically generated robot-specific configuration files, and a plugin-based architecture for extensibility. These best practices are summarized into a set of barrier to entry design principles applicable to other robotic software. The approaches for lowering the entry barrier are evaluated by usage statistics, a user survey, and compared against our design objectives for their effectiveness to users
    • …
    corecore