407 research outputs found

    A complex overview of modeling and control of the rotary single inverted pendulum system

    Get PDF
    The purpose of this paper is to present an in-depth survey of the rotary single inverted pendulum system from a control engineer's point of view. The scope of the survey includes modeling and open-loop analysis of the system as well as design and verification of balancing and swing up controllers which ensure successful stabilization of the pendulum in the unstable upright equilibrium. All relevant tasks and simulation experiments are conducted using the appropriate function blocks, GUI applications and demonstration schemes from a Simulink block library developed by the authors of the paper. The library is called Inverted Pendula Modeling and Control (IPMaC) and offers comprehensive program support for modeling, simulation and control of classical (linear) and rotary inverted pendulum systems

    An Innovative MIMO Iterative Learning Control Approach for the Position Control of a Hydraulic Press

    Get PDF
    To improve the performance of hydraulic press position control and eliminate the need to manually define control signals, this paper proposes a multi-input-multi-output (MIMO) Iterative Learning Control (ILC) algorithm. The MIMO ILC algorithm design is based on the inversion of the known low frequency dynamics of the hydraulic press, whereas the unknown and uncertain high frequency dynamics are discarded due to their low influence in the learning transient. Moreover, for the MIMO ILC convergence condition, a graphical method is proposed, in which the ILC learning filter eigenvalues are analyzed. This method allows studying the stability and convergence rate of the algorithm intuitively. Theoretical analysis and results prove that with the MIMO ILC algorithm the position control is automated and that high precision in the position tracking is gained. A comparison with other model inverse ILC approaches is carried out and it is shown that the proposed MIMO ILC algorithm outperforms the existing algorithms, reducing the number of iterations required to converge while guaranteeing system stability. Furthermore, experimental results in a hydraulic test rig are presented and compared to those obtained with a conventional PI controllerThis work was supported in part by the Department of Development and Infrastructures of the Government of the Basque Country via Industrial Doctorate Program BIKAINTEK under Grant 20-AF-W2-2018-00015
    corecore