343,385 research outputs found

    Iterative Bounded Distance Decoding of Product Codes with Scaled Reliability

    Get PDF
    We propose a modified iterative bounded distance decoding of product codes. The proposed algorithm is based on exchanging hard messages iteratively and exploiting channel reliabilities to make hard decisions at each iteration. Performance improvements up to 0.26 dB are achieved

    Iterated decoding of modified product codes in optical networks:[invited]

    Get PDF

    Bias-tailored quantum LDPC codes

    Get PDF
    Bias-tailoring allows quantum error correction codes to exploit qubit noise asymmetry. Recently, it was shown that a modified form of the surface code, the XZZX code, exhibits considerably improved performance under biased noise. In this work, we demonstrate that quantum low density parity check codes can be similarly bias-tailored. We introduce a bias-tailored lifted product code construction that provides the framework to expand bias-tailoring methods beyond the family of 2D topological codes. We present examples of bias-tailored lifted product codes based on classical quasi-cyclic codes and numerically assess their performance using a belief propagation plus ordered statistics decoder. Our Monte Carlo simulations, performed under asymmetric noise, show that bias-tailored codes achieve several orders of magnitude improvement in their error suppression relative to depolarising noise.Comment: 21 Pages, 13 Figures. Comments welcome

    Partial Syndrome Measurement for Hypergraph Product Codes

    Full text link
    Hypergraph product codes are a promising avenue to achieving fault-tolerant quantum computation with constant overhead. When embedding these and other constant-rate qLDPC codes into 2D, a significant number of nonlocal connections are required, posing difficulties for some quantum computing architectures. In this work, we introduce a fault-tolerance scheme that aims to alleviate the effects of implementing this nonlocality by measuring generators acting on spatially distant qubits less frequently than those which do not. We investigate the performance of a simplified version of this scheme, where the measured generators are randomly selected. When applied to hypergraph product codes and a modified small-set-flip decoding algorithm, we prove that for a sufficiently high percentage of generators being measured, a threshold still exists. We also find numerical evidence that the logical error rate is exponentially suppressed even when a large constant fraction of generators are not measured.Comment: 10 pages, 4 figure

    Degree Optimization and Stability Condition for the Min-Sum Decoder

    Full text link
    The min-sum (MS) algorithm is arguably the second most fundamental algorithm in the realm of message passing due to its optimality (for a tree code) with respect to the {\em block error} probability \cite{Wiberg}. There also seems to be a fundamental relationship of MS decoding with the linear programming decoder \cite{Koetter}. Despite its importance, its fundamental properties have not nearly been studied as well as those of the sum-product (also known as BP) algorithm. We address two questions related to the MS rule. First, we characterize the stability condition under MS decoding. It turns out to be essentially the same condition as under BP decoding. Second, we perform a degree distribution optimization. Contrary to the case of BP decoding, under MS decoding the thresholds of the best degree distributions for standard irregular LDPC ensembles are significantly bounded away from the Shannon threshold. More precisely, on the AWGN channel, for the best codes that we find, the gap to capacity is 1dB for a rate 0.3 code and it is 0.4dB when the rate is 0.9 (the gap decreases monotonically as we increase the rate). We also used the optimization procedure to design codes for modified MS algorithm where the output of the check node is scaled by a constant 1/α1/\alpha. For α=1.25\alpha = 1.25, we observed that the gap to capacity was lesser for the modified MS algorithm when compared with the MS algorithm. However, it was still quite large, varying from 0.75 dB to 0.2 dB for rates between 0.3 and 0.9. We conclude by posing what we consider to be the most important open questions related to the MS algorithm.Comment: submitted to ITW 0

    Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes

    Get PDF
    Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors

    Modified algorithm for hard decision decoding of product codes

    Get PDF
    Product coding produces powerful long codes from short constituent codes. The conventional row-column decoding algorithm of the product code does not exploit its full power of correcting random errors and proposes a modification to the conventional decoding algorithm, which makes it capable of reaching the theoretical error correction capability of the code. In addition to its theoretical significance, the modified algorithm is shown to provide a gain of 0.5 dB over the conventional algorithm for AWGN channels
    • …
    corecore