98 research outputs found

    Modified Linear Programming and Class 0 Bounds for Graph Pebbling

    Full text link
    Given a configuration of pebbles on the vertices of a connected graph GG, a \emph{pebbling move} removes two pebbles from some vertex and places one pebble on an adjacent vertex. The \emph{pebbling number} of a graph GG is the smallest integer kk such that for each vertex vv and each configuration of kk pebbles on GG there is a sequence of pebbling moves that places at least one pebble on vv. First, we improve on results of Hurlbert, who introduced a linear optimization technique for graph pebbling. In particular, we use a different set of weight functions, based on graphs more general than trees. We apply this new idea to some graphs from Hurlbert's paper to give improved bounds on their pebbling numbers. Second, we investigate the structure of Class 0 graphs with few edges. We show that every nn-vertex Class 0 graph has at least 53n−113\frac53n - \frac{11}3 edges. This disproves a conjecture of Blasiak et al. For diameter 2 graphs, we strengthen this lower bound to 2n−52n - 5, which is best possible. Further, we characterize the graphs where the bound holds with equality and extend the argument to obtain an identical bound for diameter 2 graphs with no cut-vertex.Comment: 19 pages, 8 figure

    On Characterizing the Data Access Complexity of Programs

    Full text link
    Technology trends will cause data movement to account for the majority of energy expenditure and execution time on emerging computers. Therefore, computational complexity will no longer be a sufficient metric for comparing algorithms, and a fundamental characterization of data access complexity will be increasingly important. The problem of developing lower bounds for data access complexity has been modeled using the formalism of Hong & Kung's red/blue pebble game for computational directed acyclic graphs (CDAGs). However, previously developed approaches to lower bounds analysis for the red/blue pebble game are very limited in effectiveness when applied to CDAGs of real programs, with computations comprised of multiple sub-computations with differing DAG structure. We address this problem by developing an approach for effectively composing lower bounds based on graph decomposition. We also develop a static analysis algorithm to derive the asymptotic data-access lower bounds of programs, as a function of the problem size and cache size

    LIPIcs

    Get PDF
    We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results in cryptography. We consider instead the non- deterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10–15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström ’08, ’11] we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure

    Inapproximability of the Standard Pebble Game and Hard to Pebble Graphs

    Full text link
    Pebble games are single-player games on DAGs involving placing and moving pebbles on nodes of the graph according to a certain set of rules. The goal is to pebble a set of target nodes using a minimum number of pebbles. In this paper, we present a possibly simpler proof of the result in [CLNV15] and strengthen the result to show that it is PSPACE-hard to determine the minimum number of pebbles to an additive n1/3−ϵn^{1/3-\epsilon} term for all ϵ>0\epsilon > 0, which improves upon the currently known additive constant hardness of approximation [CLNV15] in the standard pebble game. We also introduce a family of explicit, constant indegree graphs with nn nodes where there exists a graph in the family such that using constant kk pebbles requires Ω(nk)\Omega(n^k) moves to pebble in both the standard and black-white pebble games. This independently answers an open question summarized in [Nor15] of whether a family of DAGs exists that meets the upper bound of O(nk)O(n^k) moves using constant kk pebbles with a different construction than that presented in [AdRNV17].Comment: Preliminary version in WADS 201

    Cumulative Space in Black-White Pebbling and Resolution

    Get PDF

    Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions

    Full text link
    For current state-of-the-art DPLL SAT-solvers the two main bottlenecks are the amounts of time and memory used. In proof complexity, these resources correspond to the length and space of resolution proofs. There has been a long line of research investigating these proof complexity measures, but while strong results have been established for length, our understanding of space and how it relates to length has remained quite poor. In particular, the question whether resolution proofs can be optimized for length and space simultaneously, or whether there are trade-offs between these two measures, has remained essentially open. In this paper, we remedy this situation by proving a host of length-space trade-off results for resolution. Our collection of trade-offs cover almost the whole range of values for the space complexity of formulas, and most of the trade-offs are superpolynomial or even exponential and essentially tight. Using similar techniques, we show that these trade-offs in fact extend to the exponentially stronger k-DNF resolution proof systems, which operate with formulas in disjunctive normal form with terms of bounded arity k. We also answer the open question whether the k-DNF resolution systems form a strict hierarchy with respect to space in the affirmative. Our key technical contribution is the following, somewhat surprising, theorem: Any CNF formula F can be transformed by simple variable substitution into a new formula F' such that if F has the right properties, F' can be proven in essentially the same length as F, whereas on the other hand the minimal number of lines one needs to keep in memory simultaneously in any proof of F' is lower-bounded by the minimal number of variables needed simultaneously in any proof of F. Applying this theorem to so-called pebbling formulas defined in terms of pebble games on directed acyclic graphs, we obtain our results.Comment: This paper is a merged and updated version of the two ECCC technical reports TR09-034 and TR09-047, and it hence subsumes these two report

    Towards Understanding and Harnessing the Potential of Clause Learning

    Full text link
    Efficient implementations of DPLL with the addition of clause learning are the fastest complete Boolean satisfiability solvers and can handle many significant real-world problems, such as verification, planning and design. Despite its importance, little is known of the ultimate strengths and limitations of the technique. This paper presents the first precise characterization of clause learning as a proof system (CL), and begins the task of understanding its power by relating it to the well-studied resolution proof system. In particular, we show that with a new learning scheme, CL can provide exponentially shorter proofs than many proper refinements of general resolution (RES) satisfying a natural property. These include regular and Davis-Putnam resolution, which are already known to be much stronger than ordinary DPLL. We also show that a slight variant of CL with unlimited restarts is as powerful as RES itself. Translating these analytical results to practice, however, presents a challenge because of the nondeterministic nature of clause learning algorithms. We propose a novel way of exploiting the underlying problem structure, in the form of a high level problem description such as a graph or PDDL specification, to guide clause learning algorithms toward faster solutions. We show that this leads to exponential speed-ups on grid and randomized pebbling problems, as well as substantial improvements on certain ordering formulas

    Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

    Get PDF
    Given two structures G and H distinguishable in FO^k (first-order logic with k variables), let A^k(G,H) denote the minimum alternation depth of a FO^k formula distinguishing G from H. Let A^k(n) be the maximum value of A^k(G,H) over n-element structures. We prove the strictness of the quantifier alternation hierarchy of FO^2 in a strong quantitative form, namely A^2(n) >= n/8-2, which is tight up to a constant factor. For each k >= 2, it holds that A^k(n) > log_(k+1) n-2 even over colored trees, which is also tight up to a constant factor if k >= 3. For k >= 3 the last lower bound holds also over uncolored trees, while the alternation hierarchy of FO^2 collapses even over all uncolored graphs. We also show examples of colored graphs G and H on n vertices that can be distinguished in FO^2 much more succinctly if the alternation number is increased just by one: while in Sigma_i it is possible to distinguish G from H with bounded quantifier depth, in Pi_i this requires quantifier depth Omega(n2). The quadratic lower bound is best possible here because, if G and H can be distinguished in FO^k with i quantifier alternations, this can be done with quantifier depth n^(2k-2)
    • …
    corecore