1,620 research outputs found

    Parallel evolutionary algorithms for scheduling on heterogeneous computing and grid environments

    Get PDF
    This thesis studies the application of sequential and parallel evolutionary algorithms to the scheduling problem in heterogeneous computing and grid environments, a key problem when executing tasks in distributed computing systems. Since the 1990's, this class of systems has been increasingly employed to provide support for solving complex problems using high-performance computing techniques. The scheduling problem in heterogeneous computing systems is an NP-hard optimization problem, which has been tackled using several optimization methods in the past. Among many new techniques for optimization, evolutionary computing methods have been successfully applied to this class of problems. In this work, several evolutionary algorithms in their sequential and parallel variants are specically designed to provide accurate solutions for the problem, allowing to compute an eficient planning for heterogeneous computing and grid environments. New problem instances, far more complex than those existing in the related literature, are introduced in this thesis in order to study the scalability of the presented parallel evolutionary algorithms. In addition, a new parallel micro-CHC algorithm is developed, inspired by useful ideas from the multiobjective optimization field. Eficient numerical results of this algorithm are reported in the experimental analysis performed on both well-known problem instances and the large instances specially designed in this work. The comparative study including traditional methods and evolutionary algorithms shows that the new parallel micro-CHC is able to achieve a high problem solving eficacy, outperforming previous results already reported for the problem and also having a good scalability behavior when solving high dimension problem instances.In addition, two variants of the scheduling problem in heterogeneous environments are also tackled, showing the versatility of the proposed approach using parallel evolutionary algorithms to deal with both dynamic and multi-objective scenarios.Esta tesis estudia la aplicación de algoritmos evolutivos secuenciales y paralelos para el problema de planicación de tareas en entornos de cómputo heterogéneos y de computación grid. Desde la década de 1990, estos sistemas computacionales han sido utilizados con éxito para resolver problemas complejos utilizando técnicas de computación de alto desempeo. El problema de planificación de tareas en entornos heterogéneos es un problema de optimización NP-difícil que ha sido abordado utilizando diversas técnicas. Entre las técnicas emergentes para optimización combinatoria, los algoritmos evolutivos han sido aplicados con éxito a esta clase de problemas. En este trabajo, varios algoritmos evolutivos en sus versiones secuenciales y paralelas han sido especificamente diseados para alcanzar soluciones precisas para el problema de planicación de tareas en entornos de heterogéneos, permitiendo calcular planificaciones eficientes para entornos que modelan clusters de computadores y plataformas de computación grid. Nuevas instancias del problema, con una complejidad mucho mayor que las previamente existentes en la literatura relacionada, son presentadas en esta tesis con el objetivo de analizar la escalabilidad de los algoritmos evolutivos propuestos. Complementariamente, un nuevo método, el micro-CHC paralelo es desarrollado, inspirado en ideas ítiles provenientes del área de optimización multiobjetivo. Resultados numéricos precisos y eficientes se reportan en el análisis experimental realizado sobre instancias estándar del problema y sobre las nuevas instancias especificamente diseñadas en este trabajo.El estudio comparativo que incluye a métodos tradicionales para planificación de tareas, los nuevos métodos propuestos y algoritmos evolutivos previamente aplicados al problema, demuestra que el nuevo micro-CHC paralelo es capaz de alcanzar altos valores de eficacia, superando a los mejores resultados previamente reportados en la literatura del área y mostrando un buen comportamiento de escalabilidad para resolver las instancias de gran dimensión. Además, dos variantes del problema de planificación de tareas en entornos heterogéneos han sido inicialmente estudiadas, comprobándose la versatilidad del enfoque propuesto para resolver las variantes dinámica y multiobjetivo del problema

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Energy-aware scheduling in distributed computing systems

    Get PDF
    Distributed computing systems, such as data centers, are key for supporting modern computing demands. However, the energy consumption of data centers has become a major concern over the last decade. Worldwide energy consumption in 2012 was estimated to be around 270 TWh, and grim forecasts predict it will quadruple by 2030. Maximizing energy efficiency while also maximizing computing efficiency is a major challenge for modern data centers. This work addresses this challenge by scheduling the operation of modern data centers, considering a multi-objective approach for simultaneously optimizing both efficiency objectives. Multiple data center scenarios are studied, such as scheduling a single data center and scheduling a federation of several geographically-distributed data centers. Mathematical models are formulated for each scenario, considering the modeling of their most relevant components such as computing resources, computing workload, cooling system, networking, and green energy generators, among others. A set of accurate heuristic and metaheuristic algorithms are designed for addressing the scheduling problem. These scheduling algorithms are comprehensively studied, and compared with each other, using statistical tools to evaluate their efficacy when addressing realistic workloads and scenarios. Experimental results show the designed scheduling algorithms are able to significantly increase the energy efficiency of data centers when compared to traditional scheduling methods, while providing a diverse set of trade-off solutions regarding the computing efficiency of the data center. These results confirm the effectiveness of the proposed algorithmic approaches for data center infrastructures.Los sistemas informáticos distribuidos, como los centros de datos, son clave para satisfacer la demanda informática moderna. Sin embargo, su consumo de energético se ha convertido en una gran preocupación. Se estima que mundialmente su consumo energético rondó los 270 TWh en el año 2012, y algunos prevén que este consumo se cuadruplicará para el año 2030. Maximizar simultáneamente la eficiencia energética y computacional de los centros de datos es un desafío crítico. Esta tesis aborda dicho desafío mediante la planificación de la operativa del centro de datos considerando un enfoque multiobjetivo para optimizar simultáneamente ambos objetivos de eficiencia. En esta tesis se estudian múltiples variantes del problema, desde la planificación de un único centro de datos hasta la de una federación de múltiples centros de datos geográficmentea distribuidos. Para esto, se formulan modelos matemáticos para cada variante del problema, modelado sus componentes más relevantes, como: recursos computacionales, carga de trabajo, refrigeración, redes, energía verde, etc. Para resolver el problema de planificación planteado, se diseñan un conjunto de algoritmos heurísticos y metaheurísticos. Estos son estudiados exhaustivamente y su eficiencia es evaluada utilizando una batería de herramientas estadísticas. Los resultados experimentales muestran que los algoritmos de planificación diseñados son capaces de aumentar significativamente la eficiencia energética de un centros de datos en comparación con métodos tradicionales planificación. A su vez, los métodos propuestos proporcionan un conjunto diverso de soluciones con diferente nivel de compromiso respecto a la eficiencia computacional del centro de datos. Estos resultados confirman la eficacia del enfoque algorítmico propuesto

    Energy-aware scheduling in heterogeneous computing systems

    Get PDF
    In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables

    A Multiobjective Computation Offloading Algorithm for Mobile Edge Computing

    Get PDF
    In mobile edge computing (MEC), smart mobile devices (SMDs) with limited computation resources and battery lifetime can offload their computing-intensive tasks to MEC servers, thus to enhance the computing capability and reduce the energy consumption of SMDs. Nevertheless, offloading tasks to the edge incurs additional transmission time and thus higher execution delay. This paper studies the trade-off between the completion time of applications and the energy consumption of SMDs in MEC networks. The problem is formulated as a multiobjective computation offloading problem (MCOP), where the task precedence, i.e. ordering of tasks in SMD applications, is introduced as a new constraint in the MCOP. An improved multiobjective evolutionary algorithm based on decomposition (MOEA/D) with two performance enhancing schemes is proposed.1) The problem-specific population initialization scheme uses a latency-based execution location initialization method to initialize the execution location (i.e. either local SMD or MEC server) for each task. 2) The dynamic voltage and frequency scaling based energy conservation scheme helps to decrease the energy consumption without increasing the completion time of applications. The simulation results clearly demonstrate that the proposed algorithm outperforms a number of state-of-the-art heuristics and meta-heuristics in terms of the convergence and diversity of the obtained nondominated solutions

    Multi-Objective Task Scheduling Approach for Fog Computing

    Get PDF
    Despite the remarkable work conducted to improve fog computing applications’ efficiency, the task scheduling problem in such an environment is still a big challenge. Optimizing the task scheduling in these applications, i.e. critical healthcare applications, smart cities, and transportation is urgent to save energy, improve the quality of service, reduce the carbon emission rate, and improve the flow time. As proposed in much recent work, dealing with this problem as a single objective problem did not get the desired results. As a result, this paper presents a new multi-objective approach based on integrating the marine predator’s algorithm with the polynomial mutation mechanism (MHMPA) for task scheduling in fog computing environments. In the proposed algorithm, a trade-off between the makespan and the carbon emission ratio based on the Pareto optimality is produced. An external archive is utilized to store the non-dominated solutions generated from the optimization process. Also, another improved version based on the marine predator’s algorithm (MIMPA) by using the Cauchy distribution instead of the Gaussian distribution with the levy Flight to increase the algorithm’s convergence with avoiding stuck into local minima as possible is investigated in this manuscript. The experimental outcomes proved the superiority of the MIMPA over the standard one under various performance metrics. However, the MIMPA couldn’t overcome the MHMPA even after integrating the polynomial mutation strategy with the improved version. Furthermore, several well-known robust multi-objective optimization algorithms are used to test the efficacy of the proposed method. The experiment outcomes show that MHMPA could achieve better outcomes for the various employed performance metrics: Flow time, carbon emission rate, energy, and makespan with an improvement percentage of 414, 27257.46, 64151, and 2 for those metrics, respectively, compared to the second-best compared algorithm

    Hard-deadline Constrained Workflows Scheduling Using Metaheuristic Algorithms

    Get PDF
    AbstractAn efficient scheduling is the essential part of complex scientific applications processing in computational distributed environments. The computational complexity comes as from environment heterogeneity as from the application structure that usually is represented as a workflow which contains different linked tasks. A lot of well-known techniques were proposed by different scientific groups. The most popular of them are based on greedy list-based heuristics or evolutionary metaheuristics. In this paper we investigate the applicability of previously developed metaheuristic algorithm – coevolutional genetic algorithm (CGA) for scheduling series of workflows with hard deadlines constraints
    corecore