45,841 research outputs found

    The NASA Astrophysics Data System: Architecture

    Full text link
    The powerful discovery capabilities available in the ADS bibliographic services are possible thanks to the design of a flexible search and retrieval system based on a relational database model. Bibliographic records are stored as a corpus of structured documents containing fielded data and metadata, while discipline-specific knowledge is segregated in a set of files independent of the bibliographic data itself. The creation and management of links to both internal and external resources associated with each bibliography in the database is made possible by representing them as a set of document properties and their attributes. To improve global access to the ADS data holdings, a number of mirror sites have been created by cloning the database contents and software on a variety of hardware and software platforms. The procedures used to create and manage the database and its mirrors have been written as a set of scripts that can be run in either an interactive or unsupervised fashion. The ADS can be accessed at http://adswww.harvard.eduComment: 25 pages, 8 figures, 3 table

    On the Benefit of Merging Suffix Array Intervals for Parallel Pattern Matching

    Get PDF
    We present parallel algorithms for exact and approximate pattern matching with suffix arrays, using a CREW-PRAM with pp processors. Given a static text of length nn, we first show how to compute the suffix array interval of a given pattern of length mm in O(mp+lgp+lglgplglgn)O(\frac{m}{p}+ \lg p + \lg\lg p\cdot\lg\lg n) time for pmp \le m. For approximate pattern matching with kk differences or mismatches, we show how to compute all occurrences of a given pattern in O(mkσkpmax(k,lglgn) ⁣+ ⁣(1+mp)lgplglgn+occ)O(\frac{m^k\sigma^k}{p}\max\left(k,\lg\lg n\right)\!+\!(1+\frac{m}{p}) \lg p\cdot \lg\lg n + \text{occ}) time, where σ\sigma is the size of the alphabet and pσkmkp \le \sigma^k m^k. The workhorse of our algorithms is a data structure for merging suffix array intervals quickly: Given the suffix array intervals for two patterns PP and PP', we present a data structure for computing the interval of PPPP' in O(lglgn)O(\lg\lg n) sequential time, or in O(1+lgplgn)O(1+\lg_p\lg n) parallel time. All our data structures are of size O(n)O(n) bits (in addition to the suffix array)

    Instrumenting self-modifying code

    Full text link
    Adding small code snippets at key points to existing code fragments is called instrumentation. It is an established technique to debug certain otherwise hard to solve faults, such as memory management issues and data races. Dynamic instrumentation can already be used to analyse code which is loaded or even generated at run time.With the advent of environments such as the Java Virtual Machine with optimizing Just-In-Time compilers, a new obstacle arises: self-modifying code. In order to instrument this kind of code correctly, one must be able to detect modifications and adapt the instrumentation code accordingly, preferably without incurring a high penalty speedwise. In this paper we propose an innovative technique that uses the hardware page protection mechanism of modern processors to detect such modifications. We also show how an instrumentor can adapt the instrumented version depending on the kind of modificiations as well as an experimental evaluation of said techniques.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Broadword Implementation of Parenthesis Queries

    Full text link
    We continue the line of research started in "Broadword Implementation of Rank/Select Queries" proposing broadword (a.k.a. SWAR, "SIMD Within A Register") algorithms for finding matching closed parentheses and the k-th far closed parenthesis. Our algorithms work in time O(log w) on a word of w bits, and contain no branch and no test instruction. On 64-bit (and wider) architectures, these algorithms make it possible to avoid costly tabulations, while providing a very significant speedup with respect to for-loop implementations

    An Ant-based Approach for Dynamic RWA in Optical WDM Networks

    Get PDF

    Simple, compact and robust approximate string dictionary

    Full text link
    This paper is concerned with practical implementations of approximate string dictionaries that allow edit errors. In this problem, we have as input a dictionary DD of dd strings of total length nn over an alphabet of size σ\sigma. Given a bound kk and a pattern xx of length mm, a query has to return all the strings of the dictionary which are at edit distance at most kk from xx, where the edit distance between two strings xx and yy is defined as the minimum-cost sequence of edit operations that transform xx into yy. The cost of a sequence of operations is defined as the sum of the costs of the operations involved in the sequence. In this paper, we assume that each of these operations has unit cost and consider only three operations: deletion of one character, insertion of one character and substitution of a character by another. We present a practical implementation of the data structure we recently proposed and which works only for one error. We extend the scheme to 2k<m2\leq k<m. Our implementation has many desirable properties: it has a very fast and space-efficient building algorithm. The dictionary data structure is compact and has fast and robust query time. Finally our data structure is simple to implement as it only uses basic techniques from the literature, mainly hashing (linear probing and hash signatures) and succinct data structures (bitvectors supporting rank queries).Comment: Accepted to a journal (19 pages, 2 figures
    corecore