44 research outputs found

    In-Network Decision Making Intelligence for Task Allocation in Edge Computing

    Get PDF
    Humongous contextual data are produced by sensing and computing devices (nodes) in distributed computing environments supporting inferential/predictive analytics. Nodes locally process and execute analytics tasks over contextual data. Demanding inferential analytics are crucial for supporting local real-time applications, however, they deplete nodes' resources. We contribute with a distributed methodology that pushes the task allocation decision at the network edge by intelligently scheduling and distributing analytics tasks among nodes. Each node autonomously decides whether the tasks are conditionally executed locally, or in networked neighboring nodes, or delegated to the Cloud based on the current nodes' context and statistical data relevance. We comprehensively evaluate our methodology demonstrating its applicability in edge computing environments

    TFUZZY-OF: a new method for routing protocol for low-power and lossy networks load balancing using multi-criteria decision-making

    Get PDF
    The internet of things (IoT) based on a network layer perspective includes low-power and lossy networks (LLN) that are limited in terms of power consumption, memory, and energy usage. The routing protocol used in these networks is called routing over low-power and lossy networks (RPL). Therefore, the IoT networks include smart objects that need multiple routing for their interconnections which makes traffic load balancing techniques indispensable to RPL routing protocol. In this paper, we propose a method based on fuzzy logic and the technique for the order of prioritization by similarity to the ideal solution (TOPSIS) as a well-known multi-criteria decision-making method to solve the load balancing problem by routing metrics composition. For this purpose, a combination of both link and node routing metrics namely hop count, expected transmission count, and received signal strength indicator is used. The results of simulations show that this method can increase the quality of services in terms of packet delivery ratio and average end-to-end delay

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications
    corecore