155 research outputs found

    IK-FA, a new heuristic inverse kinematics solver using firefly algorithm

    Get PDF
    In this paper, a heuristic method based on Firefly Algorithm is proposed for inverse kinematics problems in articulated robotics. The proposal is called, IK-FA. Solving inverse kinematics, IK, consists in finding a set of joint-positions allowing a specific point of the system to achieve a target position. In IK-FA, the Fireflies positions are assumed to be a possible solution for joints elementary motions. For a robotic system with a known forward kinematic model, IK-Fireflies, is used to generate iteratively a set of joint motions, then the forward kinematic model of the system is used to compute the relative Cartesian positions of a specific end-segment, and to compare it to the needed target position. This is a heuristic approach for solving inverse kinematics without computing the inverse model. IK-FA tends to minimize the distance to a target position, the fitness function could be established as the distance between the obtained forward positions and the desired one, it is subject to minimization. In this paper IK-FA is tested over a 3 links articulated planar system, the evaluation is based on statistical analysis of the convergence and the solution quality for 100 tests. The impact of key FA parameters is also investigated with a focus on the impact of the number of fireflies, the impact of the maximum iteration number and also the impact of (a, Ăź, Âż, d) parameters. For a given set of valuable parameters, the heuristic converges to a static fitness value within a fix maximum number of iterations. IK-FA has a fair convergence time, for the tested configuration, the average was about 2.3394 Ă— 10-3 seconds with a position error fitness around 3.116 Ă— 10-8 for 100 tests. The algorithm showed also evidence of robustness over the target position, since for all conducted tests with a random target position IK-FA achieved a solution with a position error lower or equal to 5.4722 Ă— 10-9.Peer ReviewedPostprint (author's final draft

    A Design for Proprioceptive Force in 3D Agility Robot Through Use of AI

    Get PDF
    For robots to be considered effective, they should be able to maneuver through 3D environments. To achieve such mobility, robots needs to be designed in such a way that would span various topographies. So, artificial intelligence algorithms have been developed to ensure agility of the robots when walking on murky topographies. In the current state of the art legged robots, there is still much progress need to be made in research to turn them into automobiles with great agility to be used in the real world utility and provide mobility in rough. GOAT leg as a means of artificial intelligence is still a new phenomenon. There still exists a number of preliminary tests that need to be done in accessing and in the characterization of the leg’s current performance and its implications in the future. This study seeks to develop and agility model which would be useful in ensuring that the robots remain agile in such complex environments. To do this, a simulation has been through Matlab analysis. Results of the current study showed that, 3-RSR was designed to ensure that a high fidelity proprioceptive force control would enable legs with the mechanically spring stiffness. Implications and future recommendations also discussed

    Walking Gait Planning And Stability Control

    Get PDF

    Action module planning and Cartesian based control of an experimental climbing robot

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1997.Includes bibliographical references (leaves 88-95).by David M. Bevly.M.S

    3LP: a linear 3D-walking model including torso and swing dynamics

    Get PDF
    In this paper, we present a new model of biped locomotion which is composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to double support, this model has different actuation possibilities in the swing hip and stance ankle which could be widely used to produce different walking gaits. Without the need for numerical time-integration, closed-form solutions help finding periodic gaits which could be simply scaled in certain dimensions to modulate the motion online. Thanks to linearity properties, the proposed model can provide a computationally fast platform for model predictive controllers to predict the future and consider meaningful inequality constraints to ensure feasibility of the motion. Such property is coming from describing dynamics with joint torques directly and therefore, reflecting hardware limitations more precisely, even in the very abstract high level template space. The proposed model produces human-like torque and ground reaction force profiles and thus, compared to point-mass models, it is more promising for precise control of humanoid robots. Despite being linear and lacking many other features of human walking like CoM excursion, knee flexion and ground clearance, we show that the proposed model can predict one of the main optimality trends in human walking, i.e. nonlinear speed-frequency relationship. In this paper, we mainly focus on describing the model and its capabilities, comparing it with human data and calculating optimal human gait variables. Setting up control problems and advanced biomechanical analysis still remain for future works.Comment: Journal paper under revie
    • …
    corecore