243 research outputs found

    Compact printed multiband antenna with independent setting suitable for fixed and reconfigurable wireless communication systems

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper presents the design of a low-profile compact printed antenna for fixed frequency and reconfigurable frequency bands. The antenna consists of a main patch, four sub-patches, and a ground plane to generate five frequency bands, at 0.92, 1.73, 1.98, 2.4, and 2.9 GHz, for different wireless systems. For the fixed-frequency design, the five individual frequency bands can be adjusted and set independently over the wide ranges of 18.78%, 22.75%, 4.51%, 11%, and 8.21%, respectively, using just one parameter of the antenna. By putting a varactor (diode) at each of the sub-patch inputs, four of the frequency bands can be controlled independently over wide ranges and the antenna has a reconfigurable design. The tunability ranges for the four bands of 0.92, 1.73, 1.98, and 2.9 GHz are 23.5%, 10.30%, 13.5%, and 3%, respectively. The fixed and reconfigurable designs are studied using computer simulation. For verification of simulation results, the two designs are fabricated and the prototypes are measured. The results show a good agreement between simulated and measured results

    Fixed and reconfigurable multiband antennas

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel UniversityWith the current scenario of development of antennas in the wireless communication field, the need of compact multiband, multifunctional and cost effective antenna is on the rise. The objective of this thesis is to present fixed and reconfigurable techniques and methods for small and slim multiband antennas, which are applicable to serve modern small and slime wireless, mobile and cognitive radio applications. In the fixed designs, independent control of the operating frequencies is investigated to enhance the antennas capabilities and to give the designer an additional level of freedom to design the antenna for other bands easily without altering the shape or the size of the antenna. In addition, for mobile phone antenna, the effect of user’s hand and mobile phone housing are studied to be with minimum effect. Although fixed multiband antennas can widely be used in many different systems or devices, they lack flexibility to accommodate new services compared with reconfigurable antennas. A reconfigurable antenna can be considered as one of the key advances for future wireless communication transceivers. The advantage of using a reconfigurable antenna is to operate in multiband where the total antenna volume can be reused and therefore the overall size can be reduced. Moreover, the future of cell phones and other personal mobile devices require compact multiband antennas and smart antennas with reconfigurable features. Two different types of frequency reconfigurability are investigated in this thesis: switchable and tunable. In the switchable reconfigurability, PIN diodes have been used so the antenna’s operating frequencies can hop between different services whereas varactor diode with variable capacitance allow the antenna’s operating frequencies to be fine-tuned over the operating bands. With this in mind, firstly, a switchable compact and slim antenna with two patch elements is presented for cognitive radio applications where the antenna is capable of operating in wideband and narrow bands depending on the states of the switches. In addition to this, a switchable design is proposed to switch between single, dual and tri bands applications (using a single varactor diode to act as a switch at lower capacitance values) with some fine tuning capabilities for the first and third bands when the capacitance of the diode is further increased. Secondly, the earlier designed fixed antennas are modified to be reconfigurable with fine-tuning so that they can be used for more applications in both wireless and mobile applications with the ability to control the bands simultaneously or independently over a wide range. Both analytical and numerical methods are used to implement a realistic and functional design. Parametric analyses using simulation tools are performed to study critical parameters that may affect the designs. Finally, the simulated designs are fabricated, and measured results are presented that validate the design approaches

    Micro-Electro-Mechanical Systems (MEMS) Integrated Frequency Reconfigurable Antenna

    Get PDF
    In this paper, the design, analysis, and characterization of reconfigurable antennas based on radio frequency micro-electro-mechanical systems (RF MEMS) operating in the United States\u27 public safety (PS) bands are presented. The design methodology of these antennas, which are different from the normal antenna design, is also reported. In this thesis, two electrically small reconfigurable antenna designs have been presented, with two and three modes of operation, and central frequencies of 718 and 4960 MHz and of 857,809 and 4960 MHz, respectively. The maximum frequency tunable ratio achieved in these designs is 7. The recongurability between the modes is achieved by one and three RF MEMS switches in all three designs. These switches enable a change in the length of the current flow path, thereby changing the resonance frequencies. The measurement results for impedance and radiation characteristics of the fabricated antennas prototypes are also presented, and agree reasonably well with the simulations results from An-soft HFSS

    Tunable decoupling and matching concepts for compact mobile terminal antennas

    Get PDF
    [no abstract

    Terminal Antenna Design

    Get PDF
    This paper introduces first some general considerations about antenna miniaturization and multi-band terminal antenna design. These general design principles are then illustrated on some practical applications

    The effect of the user's body on high-Q and low-Q planar inverted F antennas for LTE frequencies

    Get PDF

    Tunable Antennas to Address the LTE Bandwidth Challenge on Small Mobile Terminals: One World, One Radio.

    Get PDF
    corecore