418 research outputs found

    Denial-of-Service Resistance in Key Establishment

    Get PDF
    Denial of Service (DoS) attacks are an increasing problem for network connected systems. Key establishment protocols are applications that are particularly vulnerable to DoS attack as they are typically required to perform computationally expensive cryptographic operations in order to authenticate the protocol initiator and to generate the cryptographic keying material that will subsequently be used to secure the communications between initiator and responder. The goal of DoS resistance in key establishment protocols is to ensure that attackers cannot prevent a legitimate initiator and responder deriving cryptographic keys without expending resources beyond a responder-determined threshold. In this work we review the strategies and techniques used to improve resistance to DoS attacks. Three key establishment protocols implementing DoS resistance techniques are critically reviewed and the impact of misapplication of the techniques on DoS resistance is discussed. Recommendations on effectively applying resistance techniques to key establishment protocols are made

    Securing Control Signaling in Mobile IPv6 with Identity-Based Encryption

    Get PDF

    A framework for IPSec functional architecture.

    Get PDF
    In today\u27s network, various stand-alone security services and/or proxies are used to provide different security services. These individual security systems implementing one single security function cannot address security needs of evolving networks that require secure protocol such as IPSec. In this paper, we provide a framework for implementing IPSec security functions in a well structured functional architecture. The proposed architecture is modular and allows for composing software applications from products commercially available and developed by different suppliers to implement the entire security requirements of IPSec protocol. In addition the proposed architecture is robust in the sense that it supports open standards and interfaces, and implements security functions of IPSec as an integrated solution under a unified security management system.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .F34. Source: Masters Abstracts International, Volume: 44-03, page: 1451. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Efficient, DoS-Resistant, Secure Key Exchange for Internet Protocols

    Get PDF
    We describe JFK, a new key exchange protocol, primarily designed for use in the IP Security Architecture. It is simple, efficient, and secure; we sketch a proof of the latter property. JFK also has a number of novel engineering parameters that permit a variety of trade-offs, most notably the ability to balance the need for perfect forward secrecy against susceptibility to denial-of-service attacks

    SECURITY AND PRIVACY ISSUES IN MOBILE NETWORKS, DIFFICULTIES AND SOLUTIONS

    Get PDF
    Mobile communication is playing a vital role in the daily life for the last two decades; in turn its fields gained the research attention, which led to the introduction of new technologies, services and applications. These new added facilities aimed to ease the connectivity and reachability; on the other hand, many security and privacy concerns were not taken into consideration. This opened the door for the malicious activities to threaten the deployed systems and caused vulnerabilities for users, translated in the loss of valuable data and major privacy invasions. Recently, many attempts have been carried out to handle these concerns, such as improving systems’ security and implementing different privacy enhancing mechanisms. This research addresses these problems and provides a mean to preserve privacy in particular. In this research, a detailed description and analysis of the current security and privacy situation in the deployed systems is given. As a result, the existing shortages within these systems are pointed out, to be mitigated in development. Finally a privacy preserving prototype model is proposed. This research has been conducted as an extensive literature review about the most relevant references and researches in the field, using the descriptive and evaluative research methodologies. The main security models, parameters, modules and protocols are presented, also a detailed description of privacy and its related arguments, dimensions and factors is given. The findings include that mobile networks’ security along with users are vulnerable due to the weaknesses of the key exchange procedures, the difficulties that face possession, repudiation, standardization, compatibility drawbacks and lack of configurability. It also includes the need to implement new mechanisms to protect security and preserve privacy, which include public key cryptography, HIP servers, IPSec, TLS, NAT and DTLS-SRTP. Last but not least, it shows that privacy is not absolute and it has many conflicts, also privacy requires sophisticated systems, which increase the load and cost of the system.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Protection of LAN-wide, P2P interactions: a holistic approach

    Get PDF
    This article advocates the need of a holistic approach to protect LAN interactions and presents a solution for implementing it based on secure LAN (SLAN), a novel security architecture. SLAN uses the 802.1X access control mechanisms and is supported by a key distribution centre (KDC) built upon an 802.1X authentication server. The KDC is used, together with a new host identification policy and modified DHCP servers, to provide proper resource allocation and message authentication in DHCP transactions. The KDC is used to authenticate ARP transactions and to distribute session keys to pairs of LAN hosts, allowing them to set up arbitrary, LAN-wide peer-to-peer security associations using such session keys. We show how PPPoE and IPSec security associations may be instantiated and present a prototype implementation for IPSec

    Some Implementation Issues for Security Services based on IBE

    Get PDF
    Identity Based Encryption (IBE) is a public key cryptosystem where a unique identity string, such as an e-mail address, can be used as a public key. IBE is simpler than the traditional PKI since certificates are not needed. An IBE scheme is usually based on pairing of discrete points on elliptic curves. An IBE scheme can also be based on quadratic residuosity. This paper presents an overview of these IBE schemes and surveys present IBE based security services. Private key management is described in detail with protocols to authenticate users of Private Key Generation Authorities (PKG), to protect submission of generated private keys, and to avoid the key escrow problem. In the security service survey IBE implementations for smartcards, for smart phones, for security services in mobile networking, for security services in health care information systems, for secure web services, and for grid network security are presented. Also the performance of IBE schemes is estimated

    Using secure coprocessors to enforce network access policies in enterprise and ad hoc networks

    Get PDF
    Nowadays, network security is critically important. Enterprises rely on networks to improvetheir business. However, network security breaches may cause them loss of millions of dollars.Ad hoc networks, which enable computers to communicate wirelessly without the need forinfrastructure support, have been attracting more and more interests. However, they cannotbe deployed effectively due to security concerns.Studies have shown that the major network security threat is insiders (malicious orcompromised nodes). Enterprises have traditionally employed network security solutions(e.g., firewalls, intrusion detection systems, anti-virus software) and network access controltechnologies (e.g., 802.1x, IPsec/IKE) to protect their networks. However, these approachesdo not prevent malicious or compromised nodes from accessing the network. Many attacksagainst ad hoc networks, including routing, forwarding, and leader-election attacks, requiremalicious nodes joining the attacked network too.This dissertation presents a novel solution to protect both enterprise and ad hoc networksby addressing the above problem. It is a hardware-based solution that protects a networkthrough the attesting of a node's configuration before authorizing the node's access to thenetwork. Attestation is the unforgeable disclosure of a node's configuration to another node,signed by a secure coprocessor known as a Trusted Platform Module (TPM).This dissertation makes following contributions. First, several techniques at operatingsystem level (i.e., TCB prelogging, secure association root tripping, and sealing-free attestation confinement) are developed to support attestation and policy enforcement. Second, two secure attestation protocols at network level (i.e., Bound Keyed Attestation (BKA) andBatched Bound Keyed Attestation (BBKA)) are designed to overcome the risk of a man-inthe-middle (MITM) attack. Third, the above techniques are applied in enterprise networks todifferent network access control technologies to enhance enterprise network security. Fourth,AdHocSec, a novel network security solution for ad hoc networks, is proposed and evaluated. AdHocSec inserts a security layer between the network and data link layer of the networkstack. Several algorithms are designed to facilitate node's attestation in ad hoc networks,including distributed attestation (DA), and attested merger (AM) algorithm
    • …
    corecore