570 research outputs found

    Low latency low power bit flipping algorithms for LDPC decoding

    Get PDF

    Noisy Gradient Descent Bit-Flip Decoding for LDPC Codes

    Get PDF
    A modified Gradient Descent Bit Flipping (GDBF) algorithm is proposed for decoding Low Density Parity Check (LDPC) codes on the binary-input additive white Gaussian noise channel. The new algorithm, called Noisy GDBF (NGDBF), introduces a random perturbation into each symbol metric at each iteration. The noise perturbation allows the algorithm to escape from undesirable local maxima, resulting in improved performance. A combination of heuristic improvements to the algorithm are proposed and evaluated. When the proposed heuristics are applied, NGDBF performs better than any previously reported GDBF variant, and comes within 0.5 dB of the belief propagation algorithm for several tested codes. Unlike other previous GDBF algorithms that provide an escape from local maxima, the proposed algorithm uses only local, fully parallelizable operations and does not require computing a global objective function or a sort over symbol metrics, making it highly efficient in comparison. The proposed NGDBF algorithm requires channel state information which must be obtained from a signal to noise ratio (SNR) estimator. Architectural details are presented for implementing the NGDBF algorithm. Complexity analysis and optimizations are also discussed.Comment: 16 pages, 22 figures, 2 table

    Two-Bit Bit Flipping Decoding of LDPC Codes

    Full text link
    In this paper, we propose a new class of bit flipping algorithms for low-density parity-check (LDPC) codes over the binary symmetric channel (BSC). Compared to the regular (parallel or serial) bit flipping algorithms, the proposed algorithms employ one additional bit at a variable node to represent its "strength." The introduction of this additional bit increases the guaranteed error correction capability by a factor of at least 2. An additional bit can also be employed at a check node to capture information which is beneficial to decoding. A framework for failure analysis of the proposed algorithms is described. These algorithms outperform the Gallager A/B algorithm and the min-sum algorithm at much lower complexity. Concatenation of two-bit bit flipping algorithms show a potential to approach the performance of belief propagation (BP) decoding in the error floor region, also at lower complexity.Comment: 6 pages. Submitted to IEEE International Symposium on Information Theory 201

    New low-density-parity-check decoding approach based on the hard and soft decisions algorithms

    Get PDF
    It is proved that hard decision algorithms are more appropriate than a soft decision for low-density parity-check (LDPC) decoding since they are less complex at the decoding level. On the other hand, it is notable that the soft decision algorithm outperforms the hard decision one in terms of the bit error rate (BER) gap. In order to minimize the BER and the gap between these two families of LDPC codes, a new LDPC decoding algorithm is suggested in this paper, which is based on both the normalized min-sum (NMS) and modified-weighted bit-flipping (MWBF). The proposed algorithm is named normalized min sum- modified weighted bit flipping (NMSMWBF). The MWBF is executed after the NMS algorithm. The simulations show that our algorithm outperforms the NMS in terms of BER at 10-8 over the additive white gaussian noise (AWGN) channel by 0.25 dB. Furthermore, the proposed NMSMWBF and the NMS are both at the same level of decoding difficulty
    corecore