124,934 research outputs found

    A comparison of head and manual control for a position-control pursuit tracking task

    Get PDF
    Head control was compared with manual control in a pursuit tracking task involving proportional controlled-element dynamics. An integrated control/display system was used to explore tracking effectiveness in horizontal and vertical axes tracked singly and concurrently. Compared with manual tracking, head tracking resulted in a 50 percent greater rms error score, lower pilot gain, greater high-frequency phase lag and greater low-frequency remnant. These differences were statistically significant, but differences between horizontal- and vertical-axis tracking and between 1- and 2-axis tracking were generally small and not highly significant. Manual tracking results were matched with the optimal control model using pilot-related parameters typical of those found in previous manual control studies. Head tracking performance was predicted with good accuracy using the manual tracking model plus a model for head/neck response dynamics obtained from the literature

    Single camera pose estimation using Bayesian filtering and Kinect motion priors

    Full text link
    Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.Comment: 25 pages, Technical report, related to Burke and Lasenby, AMDO 2014 conference paper. Code sample: https://github.com/mgb45/SignerBodyPose Video: https://www.youtube.com/watch?v=dJMTSo7-uF

    Generalized Kernel-based Visual Tracking

    Full text link
    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine (SVM) for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose.Comment: 12 page

    Motion from Fixation

    Get PDF
    We study the problem of estimating rigid motion from a sequence of monocular perspective images obtained by navigating around an object while fixating a particular feature point. The motivation comes from the mechanics of the buman eye, which either pursuits smoothly some fixation point in the scene, or "saccades" between different fixation points. In particular, we are interested in understanding whether fixation helps the process of estimating motion in the sense that it makes it more robust, better conditioned or simpler to solve. We cast the problem in the framework of "dynamic epipolar geometry", and propose an implicit dynamical model for recursively estimating motion from fixation. This allows us to compare directly the quality of the estimates of motion obtained by imposing the fixation constraint, or by assuming a general rigid motion, simply by changing the geometry of the parameter space while maintaining the same structure of the recursive estimator. We also present a closed-form static solution from two views, and a recursive estimator of the absolute attitude between the viewer and the scene. One important issue is how do the estimates degrade in presence of disturbances in the tracking procedure. We describe a simple fixation control that converges exponentially, which is complemented by a image shift-registration for achieving sub-pixel accuracy, and assess how small deviations from perfect tracking affect the estimates of motion

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201

    Horizon Pretracking

    Full text link
    We introduce horizon pretracking as a method for analysing numerically generated spacetimes of merging black holes. Pretracking consists of following certain modified constant expansion surfaces during a simulation before a common apparent horizon has formed. The tracked surfaces exist at all times, and are defined so as to include the common apparent horizon if it exists. The method provides a way for finding this common apparent horizon in an efficient and reliable manner at the earliest possible time. We can distinguish inner and outer horizons by examining the distortion of the surface. Properties of the pretracking surface such as its expansion, location, shape, area, and angular momentum can also be used to predict when a common apparent horizon will appear, and its characteristics. The latter could also be used to feed back into the simulation by adapting e.g. boundary or gauge conditions even before the common apparent horizon has formed.Comment: 14 pages, 8 figures, minor change

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence
    corecore