1,038 research outputs found

    Maximum power point tracking and control of grid interfacing PV systems

    Get PDF
    Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power.Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power

    Modified variable step-size incremental conductance MPPT technique for photovoltaic systems

    Get PDF
    A highly efficient photovoltaic (PV) system requires a maximum power point tracker to extract peak power from PV modules. The conventional variable step-size incremental conductance (INC) maximum power point tracking (MPPT) technique has two main drawbacks. First, it uses a pre-set scaling factor, which requires manual tuning under different irradiance levels. Second, it adapts the slope of the PV characteristics curve to vary the step-size, which means any small changes in PV module voltage will significantly increase the overall step-size. Subsequently, it deviates the operating point away from the actual reference. In this paper, a new modified variable step-size INC algorithm is proposed to address the aforementioned problems. The proposed algorithm consists of two parts, namely autonomous scaling factor and slope angle variation algorithm. The autonomous scaling factor continuously adjusts the step-size without using a pre-set constant to control the trade-off between convergence speed and tracking precision. The slope angle variation algorithm mitigates the impact of PV voltage change, especially during variable irradiance conditions to improve the MPPT efficiency. The theoretical investigations of the new technique are carried out while its practicability is confirmed by simulation and experimental results

    MPPT Schemes for PV System Under Normal and Partial Shading Condition: a Review

    Full text link
    The photovoltaic system is one of the renewable energy device, which directly converts solar radiation into electricity. The I-V characteristics of PV system are nonlinear in nature and under variable Irradiance and temperature, PV system has a single operating point where the power output is maximum, known as Maximum Power Point (MPP) and the point varies on changes in atmospheric conditions and electrical load. Maximum Power Point Tracker (MPPT) is used to track MPP of solar PV system for maximum efficiency operation. The various MPPT techniques together with implementation are reported in literature. In order to choose the best technique based upon the requirements, comprehensive and comparative study should be available. The aim of this paper is to present a comprehensive review of various MPPT techniques for uniform insolation and partial shading conditions. Furthermore, the comparison of practically accepted and widely used techniques has been made based on features, such as control strategy, type of circuitry, number of control variables and cost. This review work provides a quick analysis and design help for PV systems. Article History: Received March 14, 2016; Received in revised form June 26th 2016; Accepted July 1st 2016; Available online How to Cite This Article: Sameeullah, M. and Swarup, A. (2016). MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review. Int. Journal of Renewable Energy Development, 5(2), 79-94. http://dx.doi.org/10.14710/ijred.5.2.79-9

    A modified particle swarm optimization based maximum power point tracking for photovoltaic converter system

    Get PDF
    This thesis presents a modified Particle Swarm Optimization based Maximum Power Point Tracking for Photovoltaic Converter system. All over the world, many governments are striving to exploit the vast potential of renewable energy to meet the growing energy requirements mainly when the price of oil is high. Maximum Power Point Tracking (MPPT) is a method that ensures power generated in Photovoltaic (PV) systems is optimized under various conditions. Due to partial shading or change in irradiance and temperature conditions in PV, the power-voltage characteristics exhibit multiple local peaks; one such phenomenon is the global peak. These conditions make it very challenging for MPPT to locate the global maximum power point. Many MPPT algorithms have been proposed for this purpose. In this thesis, a modified Particle Swarm Optimisation (PSO)-based MPPT method for PV systems is proposed. Unlike the conventional PSO-based MPPT methods, the proposed method accelerates convergence of the PSO algorithm by consistently decreasing weighting factor, cognitive and social parameters thus reducing the steps of iterations and improved the tracking response time. The advantage of the proposed method is that it requires fewer search steps (converges to the desired solution in a reasonable time) compared to other MPPT methods. It requires only the idea of series cells; thus, it is system independent. The control scheme was first created in MATLAB/Simulink and compared with other MPPT methods and then validated using hardware implementation. The TMS320F28335 eZDSP board was used for implementing the developed control algorithm. The results show good performance in terms of speed of convergence and also guaranteed convergence to global MPP with faster time response compared to the other MPPT methods under typical conditions (partial shading, change in irradiance and temperature, load profile). This demonstrates the effectiveness of the proposed method

    The Improved MPPT Controller For Photovoltaic System Under Partial Shading Condition

    Get PDF
    The performance of a photovoltaic (PV) array is affected by temperature, solar insolation, shading and array configuration. The PV system exhibits a non-linear I-V characteristic and its unique maximum power point on the P-V curve varies with insolation and temperature. Often the PV array gets shadowed, completely or partially, by passing clouds, neighbouring buildings and trees. This situation is of particular interest in case of large PV installations such as those used in a distributed power generation scheme and residential PV systems. Under partially shaded conditions, the P-V characteristic becomes more complex with multiple peaks. Conventional Maximum Power Point Tracking (MPPT) techniques fail to reach global peak power point and tend to stay in local peak power point which significantly reduces the efficiency of the PV system. This paper mainly focuses on extracting the maximum power from PV array under partially shaded conditions by executing improved hill climbing algorithm to identify the global maximum power point (GMPP)

    Photovoltaic MPPT techniques comparative review

    Get PDF

    A comparative study of maximum power point tracking techniques for a photovoltaic grid-connected system

    Get PDF
    Purpose. In recent years, the photovoltaic systems (PV) become popular due to several advantages among the renewable energy. Tracking maximum power point in PV systems is an important task and represents a challenging issue to increase their efficiency. Many different maximum power point tracking (MPPT) control methods have been proposed to adjust the peak power output and improve the generating efficiency of the PV system connected to the grid. Methods. This paper presents a Beta technique based MPPT controller to effectively track maximum power under all weather conditions. The effectiveness of this algorithm based MPPT is supplemented by a comparative study with incremental conductance (INC), particle swarm optimization (PSO), and fuzzy logic control (FLC). Results Faster MPPT, lower computational burden, and higher efficiency are the key contributions of the Beta based MPPT technique than the other three techniques.Мета. В останні роки фотоелектричні системи набули популярності завдяки низці переваг серед відновлюваних джерел енергії. Відстеження точки максимальної потужності у фотоелектричних системах є важливим завданням і складною проблемою для підвищення їх ефективності. Було запропоновано безліч різних методів керування відстеженням точки максимальної потужності (ВТМП) для регулювання пікової вихідної потужності та підвищення ефективності генерації фотоелектричної системи, підключеної до мережі. Методи. У цій статті представлений контролер ВТМП, заснований на бета-методі, для ефективного відстеження максимальної потужності за будь-яких погодних умов. Ефективність ВТМП на основі цього алгоритму доповнюється порівняльним дослідженням з інкрементною провідністю, оптимізацією рою частинок та нечітким логічним управлінням. Результати. Швидше ВТМП, менші витрати на обчислення та більша ефективність є ключовими перевагами методу ВТМП на основі бета-методу порівняно з трьома іншими методами
    corecore