3,328 research outputs found

    Searching by approximate personal-name matching

    Get PDF
    We discuss the design, building and evaluation of a method to access theinformation of a person, using his name as a search key, even if it has deformations. We present a similarity function, the DEA function, based on the probabilities of the edit operations accordingly to the involved letters and their position, and using a variable threshold. The efficacy of DEA is quantitatively evaluated, without human relevance judgments, very superior to the efficacy of known methods. A very efficient approximate search technique for the DEA function is also presented based on a compacted trie-tree structure.Postprint (published version

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Test Cases Selection Based on Source Code Features Extraction

    Get PDF
    Extracting valuable information from source code automatically was the subject of many research papers. Such information can be used for document traceability, concept or feature extraction, etc. In this paper, we used an Information Retrieval (IR) technique: Latent Semantic Indexing (LSI) for the automatic extraction of source code concepts for the purpose of test cases\u27 reduction. We used and updated the open source FLAT Eclipse add on to try several code stemming approaches. The goal is to check the best approach to extract code concepts that can improve the process of test cases\u27 selection or reduction

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Scribe: A Clustering Approach To Semantic Information Retrieval

    Get PDF
    Information retrieval is the process of fulfilling a user?s need for information by locating items in a data collection that are similar to a complex query that is often posed in natural language. Latent Semantic Indexing (LSI) was the predominant technique employed at the National Institute of Standards and Technology?s Text Retrieval Conference for many years until limitations of its scalability to large data sets were discovered. This thesis describes SCRIBE, a modification of LSI with improved scalability. SCRIBE clusters its semantic index into discrete volumes described by high-dimensional extensions to computer graphics data structures. SCRIBE?s clustering strategy limits the number of items that must be searched and provides for sub-linear time complexity in the number of documents. Experimental results with a large, natural language document collection demonstrate that SCRIBE achieves retrieval accuracy similar to LSI but requires 1/10 the time

    Source Code Retrieval using Case Based Reasoning

    Get PDF
    Formal verification of source code has been extensively used in the past few years in order to create dependable software systems. However, although formal languages like Spec# or JML are getting more and more popular, the set of verified implementations is very small and only growing slowly. Our work aims to automate some of the steps involved in writing specifications and their implementations, by reusing existing verified programs. That is, for a given implementation we seek to retrieve similar verified code and then reapply the missing specification that accompanies that code. In this thesis, I present the retrieval system that is part of the Arís (Analogical Reasoning for reuse of Implementation & Specification) project. The overall methodology of the Arís project is very similar to Case-Based Reasoning (CBR) and its parent discipline of Analogical Reasoning (AR), centered on the activities of solution retrieval and reuse. CBR’s retrieval phase is achieved using semantic and structural characteristics of source code. API calls are used as semantic anchors and characteristics of conceptual graphs are used to express the structure of implementations. Finally, we transfer the knowledge (i.e. formal specification) between the input implementation and the retrieved code artefacts to produce a specification for a given implementation. The evaluation results are promising and our experiments show that the proposed approach has real potential in generating formal specifications using past solutions
    • …
    corecore