128 research outputs found

    Local Freeway Ramp Metering using Self-Adjusted Fuzzy Controller

    Get PDF
    A self-adjusted fuzzy local ramp metering strategy is proposed to keep the mainline traffic state and the on-ramp queue length at reasonable levels. The fuzzy ramp metering strategy (FRMS) takes the following variables as inputs: error between desired density and measured density, change-in-error and on-ramp queue length. On-ramp metering flow is decided by these variables. It is difficult to construct fuzzy rules for a three-dimension inputs fuzzy controller based on expert knowledge, so the proposed FRMS generates fuzzy control rules by an analytic expression with correction factors. The correction factors reflect the weights upon linguistic variables of inputs and can be regulated according to actual traffic state of mainline and on-ramp. The proposed FRMS not only simplifies the process of rules definition for a multi-dimension fuzzy controller, but also has function of self-adjusted control rules. To examine the proposed FRMS, a freeway stretch in Los Angeles is simulated with distributed models. The proposed FRMS is also compared with an existing T-S FRMS and PI-ALINEA in the simulation experiments which cover different on-ramp inflow scenarios. Simulation results show the proposed FRMS provides improved adaptation to various scenarios and superiority in striking a balance between the mainline and on-ramp performances

    On Learning based Parameter Calibration and Ramp Metering of freeway Traffic Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Network Maintenance and Capacity Management with Applications in Transportation

    Get PDF
    abstract: This research develops heuristics to manage both mandatory and optional network capacity reductions to better serve the network flows. The main application discussed relates to transportation networks, and flow cost relates to travel cost of users of the network. Temporary mandatory capacity reductions are required by maintenance activities. The objective of managing maintenance activities and the attendant temporary network capacity reductions is to schedule the required segment closures so that all maintenance work can be completed on time, and the total flow cost over the maintenance period is minimized for different types of flows. The goal of optional network capacity reduction is to selectively reduce the capacity of some links to improve the overall efficiency of user-optimized flows, where each traveler takes the route that minimizes the traveler’s trip cost. In this dissertation, both managing mandatory and optional network capacity reductions are addressed with the consideration of network-wide flow diversions due to changed link capacities. This research first investigates the maintenance scheduling in transportation networks with service vehicles (e.g., truck fleets and passenger transport fleets), where these vehicles are assumed to take the system-optimized routes that minimize the total travel cost of the fleet. This problem is solved with the randomized fixed-and-optimize heuristic developed. This research also investigates the maintenance scheduling in networks with multi-modal traffic that consists of (1) regular human-driven cars with user-optimized routing and (2) self-driving vehicles with system-optimized routing. An iterative mixed flow assignment algorithm is developed to obtain the multi-modal traffic assignment resulting from a maintenance schedule. The genetic algorithm with multi-point crossover is applied to obtain a good schedule. Based on the Braess’ paradox that removing some links may alleviate the congestion of user-optimized flows, this research generalizes the Braess’ paradox to reduce the capacity of selected links to improve the efficiency of the resultant user-optimized flows. A heuristic is developed to identify links to reduce capacity, and the corresponding capacity reduction amounts, to get more efficient total flows. Experiments on real networks demonstrate the generalized Braess’ paradox exists in reality, and the heuristic developed solves real-world test cases even when commercial solvers fail.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    A self-learning motorway traffic control system for ramp metering

    Get PDF
    Self-learning systems have attracted increasing attention in the ramp metering domain in recent years. These systems are based on reinforcement learning (RL) and can learn to control motorway traffic adaptively. However, RL-based ramp metering systems are still in their early stages and have shown limitations regarding their design and evaluation. This research aims to develop a new RL-based system (known as RAS) for ramp metering to overcome these limitations. A general framework for designing a RL-based system is proposed in this research. It contains the definition of three RL elements in a ramp metering scenario and a system structure which brings together all modules to accomplish the reinforcement learning process. Under this framework, two control algorithms for both single- and multi-objective problems are developed. In addition, to evaluate the proposed system, a software platform combining the new system and a traffic flow model is developed in the research. Based on the platform developed, a systematic evaluation is carried out through a series of simulation-based experiments. By comparing with a widely used control strategy, ALINEA, the proposed system, RAS, has shown its effectiveness in learning the optimal control actions for different control objectives in both hypothetical and real motorway networks. It is found that RAS outperforms ALINEA on improving traffic efficiency in the situation with severe congestion and on maintaining user equity when multiple on-ramps are included in the motorway network. Moreover, this research has been extended to use indirect learning technology to deal with incident-induced congestion. Tests for this extension to the work are carried out based on the platform developed and a commercial software package, AIMSUN, which have shown the potential of the extended system in tackling incident-induced congestion

    Kooperativno upravljanje priljevnim tokovima na urbanim autocestama zasnovano na strojnom učenju

    Get PDF
    To cope with today’s urban motorway congestions and the inability to increase motorway capacity in urban environments requires the implementation of advanced control methods. These methods are an integral part of Intelligent Transportation Systems (ITS). An ITS essentially integrates information and communication technology to solve the congestion problems. Ramp metering (RM) and Variable Speed Limit Control (VSLC) are some of the most widely used urban motorway traffic control methods. RM provide direct influence over the on-ramp flows by using specialized traffic lights, while the VSLC control speed of mainstream flow by using variable messaging signs. A dedicated algorithm for RM or VSLC uses sensory data form an urban motorway to compute actions that will have a positive impact on both types of traffic flow. This study will focus on the cooperation of an RM and a VSLC systems, and the integration of several different RM algorithms into a single algorithm called INTEGRA. The algorithm is created by using the Adaptive Neuro-fuzzy Inference System (ANFIS) as an instance of machine learning techniques. Furthermore, INTGERA is expanded in order to integrate its original functionality with a recurrent neural network for traffic demand prediction. As the final step, this doctoral thesis will provide evaluation of different criteria for learning dataset functional setup, based on which ANFIS neural network of INTEGRA will be learned. Results of all mentioned approaches will be compared and discussed in relation with other commonly used urban motorway control methods.Glavnina istraživanja u ovom doktorskom radu vezana je upravo za upravljanje priljevnim tokovima s posebnim naglaskom na kooperaciju s drugim sustavima upravljanja prometom, te primjeni strojnog učenja. Također, u kooperaciji s upravljanjem priljevnih tokova razmatrat će se druge upravljačke metode kao što su sustav zabrane prometovanja određenim prometnim trakama, te potpuno ili djelomično upravljanje vozilima opremljenim posebnim računalnim jedinicama. Od strane autora predložen je neuro-neizraziti okvir za učenje koji omogućuje integraciju različitih strategija upravljanja priljevnim tokovima. CTMSIM makro-simulacijski alat koji je izrađen u Matlab programskom okruženju korišten je u simulaciji odabranih metoda upravljanja prometom na urbanim autocestama. Simulator je proširen od strana autora kako bi podržao kooperativno upravljanje priljevnim tokovima, kao i sustav za promjenjivo ograničenje brzina vozila

    Kooperativno upravljanje priljevnim tokovima na urbanim autocestama zasnovano na strojnom učenju

    Get PDF
    To cope with today’s urban motorway congestions and the inability to increase motorway capacity in urban environments requires the implementation of advanced control methods. These methods are an integral part of Intelligent Transportation Systems (ITS). An ITS essentially integrates information and communication technology to solve the congestion problems. Ramp metering (RM) and Variable Speed Limit Control (VSLC) are some of the most widely used urban motorway traffic control methods. RM provide direct influence over the on-ramp flows by using specialized traffic lights, while the VSLC control speed of mainstream flow by using variable messaging signs. A dedicated algorithm for RM or VSLC uses sensory data form an urban motorway to compute actions that will have a positive impact on both types of traffic flow. This study will focus on the cooperation of an RM and a VSLC systems, and the integration of several different RM algorithms into a single algorithm called INTEGRA. The algorithm is created by using the Adaptive Neuro-fuzzy Inference System (ANFIS) as an instance of machine learning techniques. Furthermore, INTGERA is expanded in order to integrate its original functionality with a recurrent neural network for traffic demand prediction. As the final step, this doctoral thesis will provide evaluation of different criteria for learning dataset functional setup, based on which ANFIS neural network of INTEGRA will be learned. Results of all mentioned approaches will be compared and discussed in relation with other commonly used urban motorway control methods.Glavnina istraživanja u ovom doktorskom radu vezana je upravo za upravljanje priljevnim tokovima s posebnim naglaskom na kooperaciju s drugim sustavima upravljanja prometom, te primjeni strojnog učenja. Također, u kooperaciji s upravljanjem priljevnih tokova razmatrat će se druge upravljačke metode kao što su sustav zabrane prometovanja određenim prometnim trakama, te potpuno ili djelomično upravljanje vozilima opremljenim posebnim računalnim jedinicama. Od strane autora predložen je neuro-neizraziti okvir za učenje koji omogućuje integraciju različitih strategija upravljanja priljevnim tokovima. CTMSIM makro-simulacijski alat koji je izrađen u Matlab programskom okruženju korišten je u simulaciji odabranih metoda upravljanja prometom na urbanim autocestama. Simulator je proširen od strana autora kako bi podržao kooperativno upravljanje priljevnim tokovima, kao i sustav za promjenjivo ograničenje brzina vozila

    Kooperativno upravljanje priljevnim tokovima na urbanim autocestama zasnovano na strojnom učenju

    Get PDF
    To cope with today’s urban motorway congestions and the inability to increase motorway capacity in urban environments requires the implementation of advanced control methods. These methods are an integral part of Intelligent Transportation Systems (ITS). An ITS essentially integrates information and communication technology to solve the congestion problems. Ramp metering (RM) and Variable Speed Limit Control (VSLC) are some of the most widely used urban motorway traffic control methods. RM provide direct influence over the on-ramp flows by using specialized traffic lights, while the VSLC control speed of mainstream flow by using variable messaging signs. A dedicated algorithm for RM or VSLC uses sensory data form an urban motorway to compute actions that will have a positive impact on both types of traffic flow. This study will focus on the cooperation of an RM and a VSLC systems, and the integration of several different RM algorithms into a single algorithm called INTEGRA. The algorithm is created by using the Adaptive Neuro-fuzzy Inference System (ANFIS) as an instance of machine learning techniques. Furthermore, INTGERA is expanded in order to integrate its original functionality with a recurrent neural network for traffic demand prediction. As the final step, this doctoral thesis will provide evaluation of different criteria for learning dataset functional setup, based on which ANFIS neural network of INTEGRA will be learned. Results of all mentioned approaches will be compared and discussed in relation with other commonly used urban motorway control methods.Glavnina istraživanja u ovom doktorskom radu vezana je upravo za upravljanje priljevnim tokovima s posebnim naglaskom na kooperaciju s drugim sustavima upravljanja prometom, te primjeni strojnog učenja. Također, u kooperaciji s upravljanjem priljevnih tokova razmatrat će se druge upravljačke metode kao što su sustav zabrane prometovanja određenim prometnim trakama, te potpuno ili djelomično upravljanje vozilima opremljenim posebnim računalnim jedinicama. Od strane autora predložen je neuro-neizraziti okvir za učenje koji omogućuje integraciju različitih strategija upravljanja priljevnim tokovima. CTMSIM makro-simulacijski alat koji je izrađen u Matlab programskom okruženju korišten je u simulaciji odabranih metoda upravljanja prometom na urbanim autocestama. Simulator je proširen od strana autora kako bi podržao kooperativno upravljanje priljevnim tokovima, kao i sustav za promjenjivo ograničenje brzina vozila

    A Review of Models of Urban Traffic Networks (With Particular reference to the Requirements for Modelling Dynamic Route Guidance Systems)

    Get PDF
    This paper reviews a number of existing models of urban traffic networks developed in Europe and North America. The primary intention is to evaluate the various models with regard to their suitability to simulate traffic conditions and driver behavior when a dynamic route guidance system is in operation

    Analysis of dynamic traffic control and management strategies

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore