4,217 research outputs found

    ELM ZA KLASIFIKACIJU TUMORA MOZGA KOD 3D MR SNIMAKA

    Get PDF
    Extreme Learning machine (ELM) a widely adopted algorithm in machine learning field is proposed for the use of pattern classification model using 3D MRI images for identifying tissue abnormalities in brain histology. The four class classification includes gray matter, white matter, cerebrospinal-fluid and tumor. The 3D MRI assessed by a pathologist indicates the ROI and the images are normalized. Texture features for each of the sub-regions is based on the Run-length Matrix, Co-occurence Matrix, Intensity, Euclidean distance, Gradient vector and neighbourhood statistics. Genetic Algorithm is custom designed to extract and sub-select a decisive optimal bank of features which are then used to model the ELM classifier and best selection of ELM algorithm parameters to handle sparse image data. The algorithm is explored using different activation function and the effect of number of neurons in the hidden layer by using different ratios of the number of features in the training and test data. The ELM classification outperformed in terms of accuracy, sensitivity and specificity as 93.20 %, 91.6 %, and 97.98% for discrimination of brain and pathological tumor tissue classification against state-of-the-art feature extraction methods and classifiers in the literature for publicly available SPL dataset.ELM, široko prihvaćen algoritam strojnog učenja se predlaže za korištenje u uzorkovanju pomoću klasifikacijskog modela 3D MRI slika za identifikaciju abnormalnosti tkiva u histologiji mozga. Četiri klase obuhvaćaju sive, bijele tvari, cerebrospinalne tekućine-i tumore. 3D MRI koji ocjenjuje patolog, ukazuje na ROI, a slike su normalizirane. Značajke tekstura za svaku od podregija se temelje na Run-length matrici, ponovnom pojavljivanju matrice, intenzitet, euklidska udaljenost, gradijent vektora i statistike susjedstva. Genetski algoritam je obično dizajniran za izdvajanje i sub-optimalan odabir odlučujući o značajkama koje se onda koriste za model ELM klasifikatora i najbolji izbor ELM parametra algoritama za obradu rijetkih slikovnih podataka. Algoritam se istražuje koristeći različite aktivacijske funkcije i utjecaj broja neurona u skrivenom sloju pomoću različitih omjera broja značajki kod trening i test podataka. ELM klasifikacija je nadmašila u smislu točnosti, osjetljivosti i specifičnosti, kao 93,20%, 91,6% i 97,98% za diskriminaciju mozga i patološki kod tumora i sistematizacije metode za prikupljanje podataka i klasifikatore u literaturi za javno dostupne SPL skup podataka

    A Survey on MRI Brain Image Segmentation Technique

    Full text link
    One of the most dangerous disease occurring these days i.e. brain tumor can be detected by MRI images. Biomedical imaging and medical image processing that plays a vital role for MRI images has now become the most challenging field in engineering and technology. A detailed information about the anatomy can be showed through MRI images, that helps in monitoring the disease and is beneficial for the diagnosis as it consists of a high tissue contrast and have fewer artifacts. For tracking the disease and to proceed its treatment, MRI images plays a key role. It is having several advantages over other imaging techniques and is an important step for post-processing of medical images. However, having a large amount of data for manual analysis can sometimes proved to be an obstacle in the way of its effective use. In this paper, the introduction of image processing and the details of image segmentation techniques such as image preprocessing, feature extraction, image enhancement and classification of tumor processes, and how image segmentation can be applied to all Other available imaging modalities that are different from one another. This paper provides the survey on various methods used for image segmentation that have been applied for MRI images, that detects the tumor by segmenting the brain images into constituent parts. Also the advantages and disadvantages of Image segmentation is discussed using the various approaches of image segmentation of MRI brain images

    Brain Tumor Prediction using Adaptive Connected Component based GLCM and SVM Method

    Get PDF
    A crucial stage in the diagnosis of brain disorders using magnetic resonance images is feature extraction. The feature extraction procedure is used to reduce the amount of the picture data by removing the necessary information from the segmented image. The segmentation strategy and features that are extracted have an impact on the classification algorithm's dependability. With the aid of a Support Vector Machine, texture features are retrieved in this study using a Grey Level Co-occurrence Matrix, while form features are extracted using connected areas. Images of benign tumours, malignant tumours, and a normal brain all exhibit distinctive features. The classification of MR images can benefit from this change in feature values. A SVM classifier will receive the features that were thusly obtained for training and testing and further able to classify the abnormalities in brain images

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    An automated system for the classification and segmentation of brain tumours in MRI images based on the modified grey level co-occurrence matrix

    Get PDF
    The development of an automated system for the classification and segmentation of brain tumours in MRI scans remains challenging due to high variability and complexity of the brain tumours. Visual examination of MRI scans to diagnose brain tumours is the accepted standard. However due to the large number of MRI slices that are produced for each patient this is becoming a time consuming and slow process that is also prone to errors. This study explores an automated system for the classification and segmentation of brain tumours in MRI scans based on texture feature extraction. The research investigates an appropriate technique for feature extraction and development of a three-dimensional segmentation method. This was achieved by the investigation and integration of several image processing methods that are related to texture features and segmentation of MRI brain scans. First, the MRI brain scans were pre-processed by image enhancement, intensity normalization, background segmentation and correcting the mid-sagittal plane (MSP) of the brain for any possible skewness in the patient’s head. Second, the texture features were extracted using modified grey level co-occurrence matrix (MGLCM) from T2-weighted (T2-w) MRI slices and classified into normal and abnormal using multi-layer perceptron neural network (MLP). The texture feature extraction method starts from the standpoint that the human brain structure is approximately symmetric around the MSP of the brain. The extracted features measure the degree of symmetry between the left and right hemispheres of the brain, which are used to detect the abnormalities in the brain. This will enable clinicians to reject the MRI brain scans of the patients who have normal brain quickly and focusing on those who have pathological brain features. Finally, the bounding 3D-boxes based genetic algorithm (BBBGA) was used to identify the location of the brain tumour and segments it automatically by using three-dimensional active contour without edge (3DACWE) method. The research was validated using two datasets; a real dataset that was collected from the MRI Unit in Al-Kadhimiya Teaching Hospital in Iraq in 2014 and the standard benchmark multimodal brain tumour segmentation (BRATS 2013) dataset. The experimental results on both datasets proved that the efficacy of the proposed system in the successful classification and segmentation of the brain tumours in MRI scans. The achieved classification accuracies were 97.8% for the collected dataset and 98.6% for the standard dataset. While the segmentation’s Dice scores were 89% for the collected dataset and 89.3% for the standard dataset

    Slantlet transform-based segmentation and α -shape theory-based 3D visualization and volume calculation methods for MRI brain tumour

    Get PDF
    Magnetic Resonance Imaging (MRI) being the foremost significant component of medical diagnosis which requires careful, efficient, precise and reliable image analyses for brain tumour detection, segmentation, visualisation and volume calculation. The inherently varying nature of tumour shapes, locations and image intensities make brain tumour detection greatly intricate. Certainly, having a perfect result of brain tumour detection and segmentation is advantageous. Despite several available methods, tumour detection and segmentation are far from being resolved. Meanwhile, the progress of 3D visualisation and volume calculation of brain tumour is very limited due to absence of ground truth. Thus, this study proposes four new methods, namely abnormal MRI slice detection, brain tumour segmentation based on Slantlet Transform (SLT), 3D visualization and volume calculation of brain tumour based on Alpha (α) shape theory. In addition, two new datasets along with ground truth are created to validate the shape and volume of the brain tumour. The methodology involves three main phases. In the first phase, it begins with the cerebral tissue extraction, followed by abnormal block detection and its fine-tuning mechanism, and ends with abnormal slice detection based on the detected abnormal blocks. The second phase involves brain tumour segmentation that covers three processes. The abnormal slice is first decomposed using the SLT, then its significant coefficients are selected using Donoho universal threshold. The resultant image is composed using inverse SLT to obtain the tumour region. Finally, in the third phase, four original ideas are proposed to visualise and calculate the volume of the tumour. The first idea involves the determination of an optimal α value using a new formula. The second idea is to merge all tumour points for all abnormal slices using the α value to form a set of tetrahedrons. The third idea is to select the most relevant tetrahedrons using the α value as the threshold. The fourth idea is to calculate the volume of the tumour based on the selected tetrahedrons. In order to evaluate the performance of the proposed methods, a series of experiments are conducted using three standard datasets which comprise of 4567 MRI slices of 35 patients. The methods are evaluated using standard practices and benchmarked against the best and up-to-date techniques. Based on the experiments, the proposed methods have produced very encouraging results with an accuracy rate of 96% for the abnormality slice detection along with sensitivity and specificity of 99% for brain tumour segmentation. A perfect result for the 3D visualisation and volume calculation of brain tumour is also attained. The admirable features of the results suggest that the proposed methods may constitute a basis for reliable MRI brain tumour diagnosis and treatments
    • …
    corecore