37 research outputs found

    Polarimetric Radar for Automotive Applications

    Get PDF
    Current automotive radar sensors prove to be a weather robust and low-cost solution, but are suffering from low resolution and are not capable of classifying detected targets. However, for future applications like autonomous driving, such features are becoming ever increasingly important. On the basis of successful state-of-the-art applications, this work presents the first in-depth analysis and ground-breaking, novel results of polarimetric millimeter wave radars for automotive applications

    Apports de l'ultra large bande et de la diversité de polarisation du radar de sol pour l'auscultation des ouvrages du génie civil

    Get PDF
    The Ground Penetrating Radar technique (GPR) is now widely used as a non destructive probing and imaging tool in several civil engineering applications mainly concerning inspection of construction materials and structures, mapping of underground utilities and voids, characterization of sub-structures, foundations and soil and estimation of sub-surface volumetric moisture content. GPR belongs to a continuously evolving field due to electronic integration, high-performance computing, and advanced signal processing. The promotion of this technology relies on the development of new system configurations and data processing tools for the interpretation of sub-surface images. In this context, the work presents first the dual polarization UWB ground coupled GPR system which has been developed recently. Then, the data processing has focalized on the development of analysis tools to transform the raw images in a more user-readable image in order to improve the GPR data interpretation especially within the scope of detection of urban pipes and soil characterization. The processing means used concern clutter removal in the pre-processing step using adaptations and extensions of the PCA and ICA algorithms. Moreover, a template matching image processing technique is presented to help the detection of hyperbola within GPR raw B-scan images. The dual polarization is finally shown to bring additional information and to improve the detection of buried dielectric objects or medium discontinuities. The performances of our analysis approaches are illustrated using synthetic data (3D FDTD simulations) and field-measurement data in controlled environments. Different polarization configurations and dielectric characteristics of objects have been considered. The potential for target discrimination has been quantified using statistical criteria such as ROCLa technique de Georadar (GPR) est actuellement largement utilisĂ©e comme une technique non-destructive de sondage et d'imagerie dans plusieurs applications du gĂ©nie civil qui concernent principalement: l'inspection des structures et des matĂ©riaux de construction, la cartographie des rĂ©seaux enterrĂ©s et des cavitĂ©s, la caractĂ©risation des fondations souterraines et du sol ainsi que l'estimation de la teneur en eau volumique du sous-sol. Le radar GPR est une technique en continuelle Ă©volution en raison de l'intĂ©gration toujours plus poussĂ©e des Ă©quipements Ă©lectroniques, des performances des calculateurs numĂ©riques, et des traitements du signal avancĂ©s. La promotion de cette technologie repose sur le dĂ©veloppement de nouvelles configurations de systĂšmes et d'outils de traitement des donnĂ©es en vue de l'interprĂ©tation des images du sous-sol. Dans ce contexte, les travaux de cette thĂšse prĂ©sentent tout d'abord le systĂšme GPR ULB (Ultra large bande) Ă  double polarisation couplĂ© au sol, lequel a Ă©tĂ© dĂ©veloppĂ© rĂ©cemment au laboratoire. Par la suite, les traitement des donnĂ©es ont Ă©tĂ© focalisĂ©s sur le dĂ©veloppement d'outils d'analyse en vue d'obtenir Ă  partir des images brutes des images plus facilement lisibles par l'utilisateur afin d'amĂ©liorer l'interprĂ©tation des donnĂ©es GPR, en particulier dans le cadre de la dĂ©tection de canalisations urbaines et la caractĂ©risation des sols. Les moyens de traitement utilisĂ©s concernent l'Ă©limination du clutter au cours d'une Ă©tape de prĂ©traitement en utilisant des adaptations et des extensions des algorithmes fondĂ©s sur les techniques PCA et ICA. De plus, une technique de traitement d'image ‘'template matching” a Ă©tĂ© proposĂ©e pour faciliter la dĂ©tection d'hyperbole dans une image Bscan de GPR. La diversitĂ© de polarisation est enfin abordĂ©e, dans le but de fournir des informations supplĂ©mentaires pour la dĂ©tection d'objets diĂ©lectriques et des discontinuitĂ©s du sous-sol. Les performances de nos outils d'analyse sont Ă©valuĂ©es sur de donnĂ©es synthĂ©tiques (simulations 3D FDTD) et des donnĂ©es de mesures obtenues dans des environnements contrĂŽlĂ©s. Pour cela, nous avons considĂ©rĂ© diffĂ©rentes configurations de polarisation et des objets Ă  caractĂ©ristiques diĂ©lectriques variĂ©es. Le potentiel de discrimination des cibles a Ă©tĂ© quantifiĂ© en utilisant le critĂšre statistique fondĂ© sur les courbes RO

    Evaluation of Multi-frequency Synthetic Aperture Radar for Subsurface Archaeological Prospection in Arid Environments

    Full text link
    The discovery of the subsurface paleochannels in the Saharan Desert with the 1981 Shuttle Imaging Radar (SIR-A) sensor was hugely significant in the field of synthetic aperture radar (SAR) remote sensing. Although previous studies had indicated the ability of microwaves to penetrate the earth’s surface in arid environments, this was the first applicable instance of subsurface imaging using a spaceborne sensor. And the discovery of the ‘radar rivers’ with associated archaeological evidence in this inhospitable environment proved the existence of an earlier less arid paleoclimate that supported past populations. Since the 1980’s SAR subsurface prospection in arid environments has progressed, albeit primarily in the fields of hydrology and geology, with archaeology being investigated to a lesser extent. Currently there is a lack of standardised methods for data acquisition and processing regarding subsurface imaging, difficulties in image interpretation and insufficient supporting quantitative verification. These barriers keep SAR technology from becoming as integral as other remote sensing techniques in archaeological practice The main objective of this thesis is to undertake a multi-frequency SAR analysis across different site types in arid landscapes to evaluate and enhance techniques for analysing SAR within the context of archaeological subsurface prospection. The analysis and associated fieldwork aim to address the gap in the literature regarding field verification of SAR image interpretation and contribute to the understanding of SAR microwave penetration in arid environments. The results presented in this thesis demonstrate successful subsurface imaging of subtle feature(s) at the site of ‘Uqdat al-Bakrah, Oman with X-band data. Because shorter wavelengths are often ignored due to their limited penetration depths as compared to the C-band or L-band data, the effectiveness of X-band sensors in archaeological prospection at this site is significant. In addition, the associated ground penetrating radar and excavation fieldwork undertaken at ‘Uqdat al-Bakrah confirm the image interpretation and support the quantitative information regarding microwave penetration

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Satellite Monitoring of Railways using Interferometric Synthetic Aperture Radar (InSAR)

    Get PDF
    There is over 15,600 km of track in the Swedish railroad network. This network is vital for the transportation of people and goods across the country. It is important that this network is monitored and maintained to ensure good function and safety. A tool for monitoring and measuring ground deformation over a large area remotely with high frequency and accuracy was developed in recent decades. This tool is known as Interferometric Synthetic Aperture Radar (InSAR), and is used by researchers, geo-technicians, and engineers. The purpose of this study has been to evaluate the use and feasibility of the InSAR technique for track condition monitoring and compare it to conventional track condition monitoring techniques. Malmbanan, which is primarily used to transport iron-ore from mines in Sweden to the ports of LuleÄ, Sweden and Narvik, Norway, is used as a case study for this project; specifically, the section between Kiruna and RiksgrÀnsen. Coordinate matching of measurements from the provided Persistent Scatterer Interferometry (PSI) InSAR data and Optram data from survey trains were performed. Then measured changes over different time spans within the two systems were overlapped and classified with different thresholds to see if there is correlation between the two systems. An extensive literature review was also conducted in order to gain an understanding of InSAR technologies and uses.The literature review showed that there is a large potential and a quickly growing number of applications of InSAR to monitor railways and other types of infrastructure, and that the tools and algorithms for this are being improved. The case study, on the other hand, shows that it can be difficult to directly compare measurement series from different tools, each working on different resolutions in terms of both time and space. InSAR is thus not about to replace techniques such as those behind Optram (using measurement trains). Instead, the approaches offer complementary perspectives, each highlighting different types of issues. We find that InSAR offers a good way to identify locations with settlements or other types of ground motions. Especially transition zones between settlements and more stable ground can be challenging from a maintenance point of view and can clearly be identified and monitored using InSAR. With the rollout of national InSAR-data, and the large increase in data accessibility, we see a considerable potential for future studies that apply the technique to the railway area
    corecore