124 research outputs found

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Spectrum Utilization and Congestion of IEEE 802.11 Networks in the 2.4 GHz ISM Band

    Get PDF
    Wi-Fi technology, plays a major role in society thanks to its widespread availability, ease of use and low cost. To assure its long term viability in terms of capacity and ability to share the spectrum efficiently, it is of paramount to study the spectrum utilization and congestion mechanisms in live environments. In this paper the service level in the 2.4 GHz ISM band is investigated with focus on todays IEEE 802.11 WLAN systems with support for the 802.11e extension. Here service level means the overall Quality of Service (QoS), i.e. can all devices fulfill their communication needs? A crosslayer approach is used, since the service level can be measured at several levels of the protocol stack. The focus is on monitoring at both the Physical (PHY) and the Medium Access Control (MAC) link layer simultaneously by performing respectively power measurements with a spectrum analyzer to assess spectrum utilization and packet sniffing to measure the congestion. Compared to traditional QoS analysis in 802.11 networks, packet sniffing allows to study the occurring congestion mechanisms more thoroughly. The monitoring is applied for the following two cases. First the influence of interference between WLAN networks sharing the same radio channel is investigated in a controlled environment. It turns out that retry rate, Clear-ToSend (CTS), Request-To-Send (RTS) and (Block) Acknowledgment (ACK) frames can be used to identify congestion, whereas the spectrum analyzer is employed to identify the source of interference. Secondly, live measurements are performed at three locations to identify this type of interference in real-live situations. Results show inefficient use of the wireless medium in certain scenarios, due to a large portion of management and control frames compared to data content frames (i.e. only 21% of the frames is identified as data frames)

    Study of QoS Management In IEEE 802.11 and 802.11e MAC Layer Protocols

    Get PDF
    Wireless networks have become increasingly popular in recent times and it has become a pressing need to ensure that the various applications using it get the necessary Quality of service. Wireless networks being inherently different from wired networks and pose a unique set of challenges . Quality of Service(QoS) is dened as the performance oered by a network to its users in terms of providing resource assurance and service dierentiation to dierent kinds of trac ows .Due to scarcity of bandwidth and high rate of packet loss in wireless networks providing QoS to time critical applications is a challeng- ing task .In this thesis we attempt to study the QoS management strategies applied by the wireless networks at the MAC layer .The most common QoS provisioning strategy is to prioritize the dierent classes of trac and make sure that the high priority trac gets preferential access to the channel .In this thesis ,a study of the binary exponential back-o algorithm which is used by the wireless MAC protocols has been done and an improvement has been proposed in which the Contention Window(CW) is varied in a non-uniform manner for dierent access categories with an aim to improve the performance parameters. The CW denes the range[0,CW] from which a random no of slots are chosen by a station in case of a failure in transmission for backing o before attempt- ing to transmit again. To demonstrate the eect of the modied contention window variation scheme simulations have been carried out using the Qualnet Simulator designed by Scalable Network Technologies, Inc. After implementing the proposed modication a performance comparison has been carried out for parameters such as packet delivery ratio, throughput and jitter

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN

    Quality of Service-Based Medium Access Control Mechanism for Multimedia Traffic in Mobile Ad Hoc Networks

    Get PDF
    This thesis describes an investigation on the problem of quality of service (QoS) support in mobile ad hoc networks (MANETs). The decentralized nature of wireless ad hoc networks makes them suitable for a variety of applications where central nodes cannot be relied on. This thesis presents a medium access control (MAC) QoS mechanism for multimedia applications in IEEE 802.11e based MANETs. IEEE 802.11e standard draft includes new features to facilitate and promote the provision of QoS guarantees in wireless networks with a long-term solution based on QoS-architectures. The motivation is driven by the need to support increasing demand of time-sensitive applications such as Voice over IP (VoIP) and video conferencing applications. IEEE 802.11e enhances the Distributed Coordination Function (DCF) and the Point Coordination Function (PCF) of the legacy IEEE 802.11, through a new coordination function: the Hybrid Coordination Function (HCF). Within the HCF, there are two methods of channel access: HCF Controlled Channel Access (HCCA) and Enhanced Distributed Channel Access (EDCA). EDCA operates in infrastructure-less ad hoc mode and is widely used in MANETs, unlike HCCA, which further assures QoS provisioning operates in infrastructure mode in the presence of access points (AP). Recent researches showed that EDCA lacks QoS support of real-time traffic in MANETs due to its contention based medium access method. This thesis takes HCCA QoS provisioning potentials to MANETs by implementing a MAC mechanism in which HCCA is employed on top of EDCA to work in infrastructure-less environment like MANET with the help of multiple channels. The mechanism dedicates a unique receiver-based channel to every mobile node. It will act as virtual hybrid coordinator (VHC) to exercise control over the channel in contention-free manner while maintaining a common channel in which all mobile nodes can exchange broadcast and routing related messages. The mechanism can be easily integrated with existing 802.11 systems without modification to existing protocols while ensuring a level of admission control and resource reservation over the medium. Simulation results indicate that the mechanism significantly improves the overall network throughput by 20% at the saturation point and improves average delay by 20% at the saturation point compared to pure EDCA with or without multiple channels. Even with multi-channel EDCA, our mechanism guarantees better performance in terms of throughput and MAC delay for high priority traffic in MANET. The research contribution on MAC layer can be integrated into a larger framework for QoS support in MANETs, which opens a wide range of further research in QoS provisioning in MANETs and solve QoS multi-layer design and implementation issues

    Voice Call Capacity Over Wireless Mesh Networks

    Get PDF
    The goal of this thesis is to understand the voice call carrying capacity of an IEEE 802.11b/e based ad hoc network. We begin with the modelling of conversational speech and define a six state semi-Markov voice model based on ITU-T P59 recommendation. We perform a theoretical analysis of the voice model and compare it with results obtained via simulations. Using a Java based IEEE 802.11 medium access layer simulator, we determine the upper-bound for the number of voice calls carried by an ad hoc network. We use a linear topology with the ideal carrier sensing range and evaluate the number of calls carried using packet loss and packet delay as metrics. We observe that, for one, two, three and four hop, 5.5 Mbps IEEE 802.11 wireless links have an upper-bound of eight, six, five, and three voice calls respectively. We then consider a carrier sensing range and a path loss model and compare them with the ideal case. We observe, after considering a carrier sensing range with path loss model, there is a reduction in the number of calls carried by the linear networks. One, two, three and four hop 5.5 Mbps IEEE 802.11 wireless links support eight, five, four, and two voice calls respectively, when a carrier sensing range and a path loss model is considered. We also find that by adopting packet dropping policies at the nodes, we improve the call carrying capacity and quality of service on the network. In our simulations of a two hop network in path loss conditions, we find that, by adopting a time delay based packet dropping policy at the nodes, the number of calls supported simultaneously increased from five to six. In a four hop linear network we find that by total packet loss is reduced by 20%, adopting a random packet dropping policy and by 50% adopting a time delay based packet dropping policy. Although there is no change in number of calls supported, load on the network is reduced
    corecore