357 research outputs found

    Image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization

    Get PDF
    Image enhancement aims at processing an input image so that the visual content of the output image is more pleasing or more useful for certain applications. Although histogram equalization is widely used in image enhancement due to its simplicity and effectiveness, it changes the mean brightness of the enhanced image and introduces a high level of noise and distortion. To address these problems, this paper proposes image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization (FIMHE). FIMHE uses fuzzy intensity measure to first segment the histogram of the original image, and then clip the histogram adaptively in order to prevent excessive image enhancement. Experiments on the Berkeley database and CVF-UGR-Image database show that FIMHE outperforms state-of-the-art histogram equalization based methods

    Local Contrast Enhancement Utilizing Bidirectional Switching Equalization Of Separated And Clipped Sub-Histograms

    Get PDF
    Digital image contrast enhancement methods that are based on histogram equalization (HE) technique are useful for the use in consumer electronic products due to their simple implementation. However, almost all the suggested enhancement methods are using global processing technique, which does not emphasize local contents. Kaedah penyerlahan beza jelas imej digit berdasarkan teknik penyeragaman histogram adalah berguna dalam penggunaan produk elektronik pengguna disebabkan pelaksanaan yang mudah. Walau bagaimanapun, kebanyakan kaedah penyerlahan yang dicadangkan adalah menggunakan teknik proses sejagat dan tidak menekan kepada kandungan setempat

    A Global Two-Stage Histogram Equalization Method for Gray-Level Images

    Get PDF
    Digital image histogram equalization is an important technique in image processing to improve the quality of the visual appearance of images. However, the available methods suffer from several problems such as side effects and noise, brightness and contrast problems, loss of information and details, and failure in enhancement and in achieving the desired results. Therefore, the Adaptive Global Two-Stage Histogram Equalization (GTSHE) method for visual property enhancement of gray-level images is proposed. The first stage aims to clip the histogram and equalize the clipped histogram based on the number of occurrences of gray-level values. The second stage adaptively adjusts the space between occurrences by using a probability density function and different cumulative distribution functions that depend on the available and missing gray-level occurrences. Experiments were conducted using a number of benchmark datasets of images such as the Galaxies, Biomedical, Miscellaneous, Aerials, and Texture datasets. The results of the experiments were compared with a number of well-known methods, i.e. HE, AHEA, ESIHE, and MVSIHE, to evaluate the performance of the proposed method. The evaluation analysis showed that the proposed GTSHE method achieved a higher accuracy rate compared to the other methods

    An Adaptive Contrast Enhancement Algorithm with Details Preserving

    Get PDF
    This paper presents an adaptive contrastenhancement algorithm with details preserving (ACEDP) toenhance gray-scale image. Initially, the input image is classifiedinto low-, middle- or high-level image based on the gray-leveldistribution of maximum number of pixels. The proposedACEDP algorithm assigns different plateau functions fordifferent type of image and histogram clipping is then performedfollowed by histogram equalization. Simulation results show thatthe proposed technique outperforms several techniques inliterature. It demonstrates good ability in contrast enhancementas well as details preservation

    Enhancement of Aerial and Medical Image using Multi resolution pyramid

    Get PDF
    Image enhancement has been an area of active research for decades. Most of the studies are aimed at improving the quality of image for better visualization. An approach for contrast enhancement utilizing multi-scale analysis is introduced. To show the effects of image enhancement, quantitative measures should be introduced. In this paper, we examine the effect of global and local enhancement using multi resolution pyramids. We identify a set of quality metric parameters for comparative performance analysis and use it to assess the enhanced output image for a number of image enhancement algorithms using pyramid

    An Adaptive Fuzzy Contrast Enhancement Algorithm with Details Preserving

    Get PDF
    This paper modifies the Adaptive Contrast Enhancement Algorithm with Details Preserving (ACEDP) technique by integrating a fuzzy element in the image type selection. The proposed technique, named the Adaptive Fuzzy Contrast Enhancement with Details Preserving (AFCEDP) technique, first computes the degree of membership of the input image to three categories, i.e. low-, middle- or high-level images. The AFCEDP technique then clips the histogram at different plateau limits that are computed from both the degree of membership and the clipping functions. The classification of an image in the ACEDP technique is done based solely on the intensity range of the maximum number of pixels, which may be inaccurate. In the proposed AFCEDP technique, the image type classification is handled in a better way with the integration of a fuzzy element. The performance of the proposed AFCEDP technique was compared with the conventional ACEDP technique and several state-of-art techniques described in the literature. The simulation results revealed that the AFCEDP technique demonstrates good capability in contrast enhancement and detail preservation. In addition, the experiments using cervical cell images and HEp-2 cell images showed great potential of the AFCEDP technique as a technique for enhancing medical microscopic images

    Digital enhancement of flow field images

    Get PDF
    Most photographs of experimentally generated fluid flow fields have inherently poor photographic quality, specifically low contrast. Thus, there is a need to establish a process for quickly and accurately enhancing these photographs to provide improved versions for physical interpretation, analysis, and publication. A sequence of digital image processing techniques which have been demonstrated to effectively enhance such photographs is described
    corecore