300 research outputs found

    Boubaker Wavelets Functions: Properties and Applications

    Get PDF
    تم في هذا البحث تقديم شرح تفصيلي لدوال متعددة حدود بوبكر المتعامدة مع بعض الخواص ذات الاهمية، كذلك استنتاج تعريف متعددات حدود بوبكر الموجية في الفترة (1, 0] وذلك بالاستفادة  من بعض الخواص المهمة لمتعددة حدود بوبكر. تمتلك هذه الدوال الاساسية خاصية العيارية المتعامدة بالإضافة الى ضرورة تواجد المنطلق المرصوص. لهذه الدوال الموجية العديد من المزايا وقد استخدمت في المجال النظري بالإضافة الى المجال العملي وتم استخدامها مع متعددات الحدود المتعامدة لغرض طرح طريقة جديدة للتعامل مع العديد من المسائل في العلوم والهندسة ولذلك تعتبر طريقة استخدام الموجبات ذات اهمية كبيرة عند الاستفادة منها في المجالات ذات العلاقة. بالإضافة الى الاستفادة من موجبات بوبكر للحصول على خاصية جديدة  وهي مشتقات دالة بوبكر الموجية. استخدمت موجية بوبكر مع طريقة الترصيف للحصول على حل عددي تقريبي لمعادلات لان ايمدن من النوع الخطي المنفرد. تصف معادلات لان ايمدن العديد من الظواهر المهمة في علم الرياضيات والفيزياء السماوي مثل الانفجارات الحرارية الكونية وتكوين النجوم. وتعتبر احدى حالات مسائل القيمة الابتدائية المنفردة للمعادلات التفاضلية اللاخطية من الرتبة الثانية. تقوم هذه الطريقة المقترحة بتحويل معادلة لان ايمدن الى نظام من المعادلات التفاضلية الخطية والتي يمكن حلها بسهولة باستخدام الحاسبة. بناءً على هذا فقد ظهر تطابق الحل العددي مع الحل التحليلي بالرغم من استخدام عدد قليل من متعددات حدود بوبكر الموجية لغرض ايجاد هذا الحل. كذلك، تم في هذا البحث البرهنة على قيمه قيد الخطأ المستخرج من هذه الطريقة. وتضمن هذا البحث على ثلاث امثلة عددية من نوع معادلات لان ايمدن لتوضيح قابلية استخدام الطريقة المقترحة. تم توضيح النتائج الحقيقة مع النتائج التقريبية في شكل جداول ورسوم هندسية لغرض المقارنة.This paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themselves is also obtained. This Boubaker wavelet is utilized along with a collocation method to obtain an approximate numerical solution of singular linear type of Lane-Emden equations. Lane-Emden equations describe several important phenomena in mathematical science and astrophysics such as thermal explosions and stellar structure. It is one of the cases of singular initial value problem in the form of second order nonlinear ordinary differential equation. The suggested method converts Lane-Emden equation into a system of linear differential equations, which can be performed easily on computer. Consequently, the numerical solution concurs with the exact solution even with a small number of Boubaker wavelets used in estimation. An estimation of error bound for the present method is also proved in this work. Three examples of Lane-Emden type equations are included to demonstrate the applicability of the proposed method. The exact known solutions against the obtained approximate results are illustrated in figures for compariso

    A novel Chebyshev wavelet method for solving fractional-order optimal control problems

    Get PDF
    This thesis presents a numerical approach based on generalized fractional-order Chebyshev wavelets for solving fractional-order optimal control problems. The exact value of the Riemann– Liouville fractional integral operator of the generalized fractional-order Chebyshev wavelets is computed by applying the regularized beta function. We apply the given wavelets, the exact formula, and the collocation method to transform the studied problem into a new optimization problem. The convergence analysis of the proposed method is provided. The present method is extended for solving fractional-order, distributed-order, and variable-order optimal control problems. Illustrative examples are considered to show the advantage of this method in comparison with the existing methods in the literature

    Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem

    Get PDF
    في هذا البحث، تم تنفيذ الطريقة الحسابية الفعالة (ECM) المستندة إلى متعددة الحدود القياسية الأحادية لحل مشكلة تدفق جيفري-هامل غير الخطية. علاوة على ذلك، تم تطوير واقتراح الطرق الحسابية الفعالة الجديدة في هذه الدراسة من خلال وظائف أساسية مناسبة وهي متعددات الحدود تشيبشيف، بيرنشتاين، ليجندر، هيرمت. يؤدي استخدام الدوال الأساسية إلى تحويل المسألة غير الخطية إلى نظام جبري غير خطي من المعادلات، والذي يتم حله بعد ذلك باستخدام برنامج ماثماتيكا®١٢. تم تطبيق تطوير طرق حسابية فعالة (D-ECM) لحل مشكلة تدفق جيفري-هامل غير الخطية، ثم تم عرض مقارنة بين الطرق. علاوة على ذلك، تم حساب الحد الأقصى للخطأ المتبقي ( )، لإظهار موثوقية الطرق المقترحة. تثبت النتائج بشكل مقنع أن ECM و D-ECM دقيقة وفعالة وموثوقة للحصول على حلول تقريبية للمشكلة.In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum error remainder ( ) has been calculated to exhibit the reliability of the suggested methods. The results persuasively prove that ECM and D-ECM are accurate, effective, and reliable in getting approximate solutions to the problem

    Laguerre wavelet solution of Bratu and Duffing equations

    Get PDF
    The aim of this study is to solve the Bratu and Duffing equations by using the Laguerre wavelet method. The solution of these nonlinear equations is approximated by Laguerre wavelets which are defined by well known Laguerre polynomials. One of the advantages of the proposed method is that it does not require the approximation of the nonlinear term like other numerical methods. The application of the method converts the nonlinear differential equation to a system of algebraic equations. The method is tested on four examples and the solutions are compared with the analytical and other numerical solutions and it is observed that the proposed method has a better accuracy.Publisher's Versio

    Range entropy: A bridge between signal complexity and self-similarity

    Get PDF
    Approximate entropy (ApEn) and sample entropy (SampEn) are widely used for temporal complexity analysis of real-world phenomena. However, their relationship with the Hurst exponent as a measure of self-similarity is not widely studied. Additionally, ApEn and SampEn are susceptible to signal amplitude changes. A common practice for addressing this issue is to correct their input signal amplitude by its standard deviation. In this study, we first show, using simulations, that ApEn and SampEn are related to the Hurst exponent in their tolerance r and embedding dimension m parameters. We then propose a modification to ApEn and SampEn called range entropy or RangeEn. We show that RangeEn is more robust to nonstationary signal changes, and it has a more linear relationship with the Hurst exponent, compared to ApEn and SampEn. RangeEn is bounded in the tolerance r-plane between 0 (maximum entropy) and 1 (minimum entropy) and it has no need for signal amplitude correction. Finally, we demonstrate the clinical usefulness of signal entropy measures for characterisation of epileptic EEG data as a real-world example.Comment: This is the revised and published version in Entrop

    Various Techniques for De-noise Image

    Get PDF
    Wavelet decomposition has a great role in eliminating noise, the aim of this work on different noise removal techniques by analyzing the color image. Based on the analysis of different image compression techniques, this paper provides a survey of existing research papers. Different types of method for noise are analyzed from the necessary image, where the disturbance was removed using wavelets with basic theories, and the most important details that will be presented in this work, which clarifies the proposed smooth and effective theory in terms of accuracy in our results. By creating new algorithms that explain how to use the proposed theory, some medical applications were used Discrete Wavelet Transform (DWT) where the results were satisfactory obtained, our proposed theory has been proven to be effective, and examples used will demonstrated this method

    Numerical solution of fractional partial differential equations by spectral methods

    Get PDF
    Fractional partial differential equations (FPDEs) have become essential tool for the modeling of physical models by using spectral methods. In the last few decades, spectral methods have been developed for the solution of time and space dimensional FPDEs. There are different types of spectral methods such as collocation methods, Tau methods and Galerkin methods. This research work focuses on the collocation and Tau methods to propose an efficient operational matrix methods via Genocchi polynomials and Legendre polynomials for the solution of two and three dimensional FPDEs. Moreover, in this study, Genocchi wavelet-like basis method and Genocchi polynomials based Ritz- Galerkin method have been derived to deal with FPDEs and variable- order FPDEs. The reason behind using the Genocchi polynomials is that, it helps to generate functional expansions with less degree and small coefficients values to derive the operational matrix of derivative with less computational complexity as compared to Chebyshev and Legendre Polynomials. The results have been compared with the existing methods such as Chebyshev wavelets method, Legendre wavelets method, Adomian decomposition method, Variational iteration method, Finite difference method and Finite element method. The numerical results have revealed that the proposed methods have provided the better results as compared to existing methods due to minimum computational complexity of derived operational matrices via Genocchi polynomials. Additionally, the significance of the proposed methods has been verified by finding the error bound, which shows that the proposed methods have provided better approximation values for under consideration FPDEs
    corecore