501 research outputs found

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Common-Ground-Type Single-Source High Step-Up Cascaded Multilevel Inverter for Transformerless PV Applications

    Get PDF
    The cascaded multilevel inverter (CMI) is one type of common inverter in industrial applications. This type of inverter can be synthesized either as a symmetric configuration with several identical H-bridge (HB) cells or as an asymmetric configuration with non-identical HB cells. In photovoltaic (PV) applications with the CMI, the PV modules can be used to replace the isolated dc sources; however, this brings inter-module leakage currents. To tackle the issue, the single-source CMI is preferred. Furthermore, in a grid-tied PV system, the main constraint is the capacitive leakage current. This problem can be addressed by providing a common ground, which is shared by PV modules and the ac grid. This paper thus proposes a topology that fulfills the mentioned requirements and thus, CMI is a promising inverter with wide-ranging industrial uses, such as PV applications. The proposed CMI topology also features high boosting capability, fault current limiting, and a transformerless configuration. To demonstrate the capabilities of this CMI, simulations and experimental results are provided

    Model Predictive Control Technique of Multilevel Inverter for PV Applications

    Get PDF
    Renewable energy sources, such as solar, wind, hydro, and biofuels, continue to gain popularity as alternatives to the conventional generation system. The main unit in the renewable energy system is the power conditioning system (PCS). It is highly desirable to obtain higher efficiency, lower component cost, and high reliability for the PCS to decrease the levelized cost of energy. This suggests a need for new inverter configurations and controls optimization, which can achieve the aforementioned needs. To achieve these goals, this dissertation presents a modified multilevel inverter topology for grid-tied photovoltaic (PV) system to achieve a lower cost and higher efficiency comparing with the existing system. In addition, this dissertation will also focus on model predictive control (MPC) which controls the modified multilevel topology to regulate the injected power to the grid. A major requirement for the PCS is harvesting the maximum power from the PV. By incorporating MPC, the performance of the maximum power point tracking (MPPT) algorithm to accurately extract the maximum power is improved for multilevel DC-DC converter. Finally, this control technique is developed for the quasi-z-source inverter (qZSI) to accurately control the DC link voltage, input current, and produce a high quality grid injected current waveform compared with the conventional techniques. This dissertation presents a modified symmetrical and asymmetrical multilevel DC-link inverter (MLDCLI) topology with less power switches and gate drivers. In addition, the MPC technique is used to drive the modified and grid connected MLDCLI. The performance of the proposed topology with finite control set model predictive control (FCS-MPC) is verified by simulation and experimentally. Moreover, this dissertation introduces predictive control to achieve maximum power point for grid-tied PV system to quicken the response by predicting the error before the switching signal is applied to the converter. Using the modified technique ensures the iii system operates at maximum power point which is more economical. Thus, the proposed MPPT technique can extract more energy compared to the conventional MPPT techniques from the same amount of installed solar panel. In further detail, this dissertation proposes the FCS-MPC technique for the qZSI in PV system. In order to further improve the performance of the system, FCS-MPC with one step horizon prediction has been implemented and compared with the classical PI controller. The presented work shows the proposed control techniques outperform the ones of the conventional linear controllers for the same application. Finally, a new method of the parallel processing is presented to reduce the time processing for the MPC

    Cascaded Inverters for Grid-Connected Photovoltaic Systems

    Get PDF
    With the extraordinary market growth in grid-connected PV systems, there is increasing interests in grid-connected PV inverters. Focus has been placed on cheap, high-efficiency, and innovative inverter solutions, leading to a high diversity within the inverters and new system configurations. This dissertation chooses cascaded multilevel inverter topologies for grid-connected PV systems to reduce the cost and improve the efficiency. First, a single-phase cascaded H-bridge multilevel PV inverter is discussed. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows independent control of each dc-link voltage. A generalized nonactive power theory is applied to generate the reactive current reference. Within the inverter’s capability, the local consumption of reactive power is provided to realize power factor correction. Then, the modular cascaded H-bridge multilevel inverter is connected to a three-phase utility system and nine PV panels. Individual MPPT control is also applied to realize better utilization of PV modules. Also, mismatches between PV panels may introduce unbalanced power supplied to the three-phase grid-connected system. Thus, a modulation compensation scheme is applied to balance the three-phase grid current by injecting a zero sequence voltage. A modular cascaded multilevel inverter prototype has been built and tested in both the single-phase and three-phase PV system. Simulation and experimental results are presented to validate the proposed control schemes. The three-phase cascaded voltage source inverter (VSI), as another cascaded inverter topology, is also proposed for grid-connected PV applications. The equivalent model and average model of the three-phase cascaded VSI are established to realize the central control. In addition, the control scheme applied in the traditional three-phase two-level VSI is modified for this application. Simulation and experimental results are presented as well. The targets of reducing the cost and improving the overall efficiency of the PV inverters can be achieved by applying the cascaded PV inverters and the proposed control schemes

    Solid state transformer technologies and applications: a bibliographical survey

    Get PDF
    This paper presents a bibliographical survey of the work carried out to date on the solid state transformer (SST). The paper provides a list of references that cover most work related to this device and a short discussion about several aspects. The sections of the paper are respectively dedicated to summarize configurations and control strategies for each SST stage, the work carried out for optimizing the design of high-frequency transformers that could adequately work in the isolation stage of a SST, the efficiency of this device, the various modelling approaches and simulation tools used to analyze the performance of a SST (working a component of a microgrid, a distribution system or just in a standalone scenario), and the potential applications that this device is offering as a component of a power grid, a smart house, or a traction system.Peer ReviewedPostprint (published version

    High-performance motor drives

    Get PDF
    This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from less than 1 W up to several dozen megawatts

    Enhanced decoupling current scheme with selective harmonic elimination pulse width modulation for cascaded multilevel inverter based static synchronous compensator

    Get PDF
    This dissertation is dedicated to a comprehensive study and performance analysis of the transformer-less Multilevel Cascaded H-bridge Inverter (MCHI) based STATic synchronous COMpensator (STATCOM). Among the shunt-connected Flexible AC Transmission System (FACTS) controllers, STATCOM has shown extensive feasibility and effectiveness in solving a wide range of power quality problems. By referring to the literature reviews, MCHI with separated DC capacitors is certainly the most versatile power inverter topology for STATCOM applications. However, due to the ill-defined transfer functions, complex control schemes and formulations were emerged to achieve a low-switching frequency high-bandwidth power control. As a result, adequate controller parameters were generally obtained by using trial and error method, which were practically ineffective and time-consuming. In this dissertation, the STATCOM is controlled to provide reactive power (VAR) compensation at the Point of Common Coupling (PCC) under different loading conditions. The goal of this work is to enhance the performance of the STATCOM with the associated proposed control scheme in achieving high dynamic response, improving transient performance, and producing high-quality output voltage waveform. To evaluate the superiority of the proposed control scheme, intensive simulation studies and numerous experiments are conducted accordingly, where a very good match between the simulation results and the experimental results is achieved in all cases and documented in this dissertation

    電力系統に接続されたモジュラー・カスケードHブリッジ多段インバータのディジタル制御

    Get PDF
    九州工業大学博士学位論文 学位記番号:生工博甲第310号 学位授与年月日:平成30年3月23日1. Introduction|2. Cascaded H-bridge Multilevel Inverter And FPGA Hardware Co-simulation|3. LCL filter interfaced DSTATCOM|4. Multiband Hysteresis Current Controlled CHMLI|5. Multiband HCC for Cascaded H-bridge inverter based DSTATCOM|6. Conclusion九州工業大学平成29年

    A comprehensive review on modular multilevel converters, submodule topologies, and modulation techniques

    Get PDF
    The concept of the modular multilevel converter (MLC) has been raising interest in research in order to improve their performance and applicability. The potential of an MLC is enormous, with a great focus on medium- and high-voltage applications, such as solar photovoltaic and wind farms, electrified railway systems, or power distribution systems. This concept makes it possible to overcome the limitation of the semiconductors blocking voltages, presenting advantageous characteristics. However, the complexity of implementation and control presents added challenges. Thus, this paper aims to contribute with a critical and comparative analysis of the state-of-the-art aspects of this concept in order to maximize its potential. In this paper, different power electronics converter topologies that can be integrated into the MLC concept are presented, highlighting the advantages and disadvantages of each topology. Nevertheless, different modulation techniques used in an MLC are also presented and analyzed. Computational simulations of all the modulation techniques under analysis were developed, based on four cascaded full-bridge topologies. Considering the simulation results, a comparative analysis was possible to make regarding the symmetry of the synthesized waveforms, the harmonic content, and the power distribution in each submodule constituting the MLC.This work has been supported by FCT—Fundação para a Ciência e Tecnologia, within the R&D Units Project Scope UIDB/00319/2020. Mr. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018, granted by the Portuguese FCT foundation
    corecore