10,396 research outputs found

    An Alternating Trust Region Algorithm for Distributed Linearly Constrained Nonlinear Programs, Application to the AC Optimal Power Flow

    Get PDF
    A novel trust region method for solving linearly constrained nonlinear programs is presented. The proposed technique is amenable to a distributed implementation, as its salient ingredient is an alternating projected gradient sweep in place of the Cauchy point computation. It is proven that the algorithm yields a sequence that globally converges to a critical point. As a result of some changes to the standard trust region method, namely a proximal regularisation of the trust region subproblem, it is shown that the local convergence rate is linear with an arbitrarily small ratio. Thus, convergence is locally almost superlinear, under standard regularity assumptions. The proposed method is successfully applied to compute local solutions to alternating current optimal power flow problems in transmission and distribution networks. Moreover, the new mechanism for computing a Cauchy point compares favourably against the standard projected search as for its activity detection properties

    The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning

    Full text link
    In this paper we study the split minimization problem that consists of two constrained minimization problems in two separate spaces that are connected via a linear operator that maps one space into the other. To handle the data of such a problem we develop a superiorization approach that can reach a feasible point with reduced (not necessarily minimal) objective function values. The superiorization methodology is based on interlacing the iterative steps of two separate and independent iterative processes by perturbing the iterates of one process according to the steps dictated by the other process. We include in our developed method two novel elements. The first one is the permission to restart the perturbations in the superiorized algorithm which results in a significant acceleration and increases the computational efficiency. The second element is the ability to independently superiorize subvectors. This caters to the needs of real-world applications, as demonstrated here for a problem in intensity-modulated radiation therapy treatment planning.Comment: Revised version, October 10, 2022; accepted for publication in: Applied Mathematics and Computatio
    • …
    corecore