2,078 research outputs found

    Modified affine arithmetic in tensor form for trivariate polynomial evaluation and algebraic surface plotting

    Get PDF
    This paper extends the modified affine arithmetic in matrix form method for bivariate polynomial evaluation and algebraic curve plotting in 2D to modified affine arithmetic in tensor form for trivariate polynomial evaluation and algebraic surface plotting in 3D. Experimental comparison shows that modified affine arithmetic in tensor form is not only more accurate but also much faster than standard affine arithmetic when evaluating trivariate polynomials

    Enhancing numerical constraint propagation using multiple inclusion representations

    Get PDF
    Building tight and conservative enclosures of the solution set is of crucial importance in the design of efficient complete solvers for numerical constraint satisfaction problems (NCSPs). This paper proposes a novel generic algorithm enabling the cooperative use, during constraint propagation, of multiple enclosure techniques. The new algorithm brings into the constraint propagation framework the strength of techniques coming from different areas such as interval arithmetic, affine arithmetic, and mathematical programming. It is based on the directed acyclic graph (DAG) representation of NCSPs whose flexibility and expressiveness facilitates the design of fine-grained combination strategies for general factorable systems. The paper presents several possible combination strategies for creating practical instances of the generic algorithm. The experiments reported on a particular instance using interval constraint propagation, interval arithmetic, affine arithmetic, and linear programming illustrate the flexibility and efficiency of the approac

    Toward accurate polynomial evaluation in rounded arithmetic

    Get PDF
    Given a multivariate real (or complex) polynomial pp and a domain D\cal D, we would like to decide whether an algorithm exists to evaluate p(x)p(x) accurately for all xāˆˆDx \in {\cal D} using rounded real (or complex) arithmetic. Here ``accurately'' means with relative error less than 1, i.e., with some correct leading digits. The answer depends on the model of rounded arithmetic: We assume that for any arithmetic operator op(a,b)op(a,b), for example a+ba+b or aā‹…ba \cdot b, its computed value is op(a,b)ā‹…(1+Ī“)op(a,b) \cdot (1 + \delta), where āˆ£Ī“āˆ£| \delta | is bounded by some constant Ļµ\epsilon where 0<Ļµā‰Ŗ10 < \epsilon \ll 1, but Ī“\delta is otherwise arbitrary. This model is the traditional one used to analyze the accuracy of floating point algorithms.Our ultimate goal is to establish a decision procedure that, for any pp and D\cal D, either exhibits an accurate algorithm or proves that none exists. In contrast to the case where numbers are stored and manipulated as finite bit strings (e.g., as floating point numbers or rational numbers) we show that some polynomials pp are impossible to evaluate accurately. The existence of an accurate algorithm will depend not just on pp and D\cal D, but on which arithmetic operators and which constants are are available and whether branching is permitted. Toward this goal, we present necessary conditions on pp for it to be accurately evaluable on open real or complex domains D{\cal D}. We also give sufficient conditions, and describe progress toward a complete decision procedure. We do present a complete decision procedure for homogeneous polynomials pp with integer coefficients, {\cal D} = \C^n, and using only the arithmetic operations ++, āˆ’- and ā‹…\cdot.Comment: 54 pages, 6 figures; refereed version; to appear in Foundations of Computational Mathematics: Santander 2005, Cambridge University Press, March 200

    A recursive Taylor method for algebraic curves and surfaces

    Get PDF
    This paper examines recursive Taylor methods for multivariate polynomial evaluation over an interval, in the context of algebraic curve and surface plotting as a particular application representative of similar problems in CAGD. The modified affine arithmetic method (MAA), previously shown to be one of the best methods for polynomial evaluation over an interval, is used as a benchmark; experimental results show that a second order recursive Taylor method (i) achieves the same or better graphical quality compared to MAA when used for plotting, and (ii) needs fewer arithmetic operations in many cases. Furthermore, this method is simple and very easy to implement. We also consider which order of Taylor method is best to use, and propose that second order Taylor expansion is generally best. Finally, we briefly examine theoretically the relation between the Taylor method and the MAA method

    Modified Affine Arithmetic Is More Accurate than Centered Interval Arithmetic or Affine Arithmetic

    No full text
    In this paper we give mathematical proofs of two new results relevant to evaluating algebraic functions over a box-shaped region: (i) using interval arithmetic in centered form is always more accurate than standard a#ne arithmetic, and (ii) modified a#ne arithmetic is always more accurate than interval arithmetic in centered form. Test results show that modified a#ne arithmetic is not only more accurate but also much faster than standard a#ne arithmetic. We thus suggest that modified a#ne arithmetic is the method of choice for evaluating algebraic functions, such as implicit surfaces, over a box

    Precision analysis for hardware acceleration of numerical algorithms

    No full text
    The precision used in an algorithm affects the error and performance of individual computations, the memory usage, and the potential parallelism for a fixed hardware budget. However, when migrating an algorithm onto hardware, the potential improvements that can be obtained by tuning the precision throughout an algorithm to meet a range or error specification are often overlooked; the major reason is that it is hard to choose a number system which can guarantee any such specification can be met. Instead, the problem is mitigated by opting to use IEEE standard double precision arithmetic so as to be ā€˜no worseā€™ than a software implementation. However, the flexibility in the number representation is one of the key factors that can be exploited on reconfigurable hardware such as FPGAs, and hence ignoring this potential significantly limits the performance achievable. In order to optimise the performance of hardware reliably, we require a method that can tractably calculate tight bounds for the error or range of any variable within an algorithm, but currently only a handful of methods to calculate such bounds exist, and these either sacrifice tightness or tractability, whilst simulation-based methods cannot guarantee the given error estimate. This thesis presents a new method to calculate these bounds, taking into account both input ranges and finite precision effects, which we show to be, in general, tighter in comparison to existing methods; this in turn can be used to tune the hardware to the algorithm specifications. We demonstrate the use of this software to optimise hardware for various algorithms to accelerate the solution of a system of linear equations, which forms the basis of many problems in engineering and science, and show that significant performance gains can be obtained by using this new approach in conjunction with more traditional hardware optimisations

    TMsim : an algorithmic tool for the parametric and worst-case simulation of systems with uncertainties

    Get PDF
    This paper presents a general purpose, algebraic toolā€”named TMsimā€”for the combined parametric and worst-case analysis of systems with bounded uncertain parameters.The tool is based on the theory of Taylor models and represents uncertain variables on a bounded domain in terms of a Taylor polynomial plus an interval remainder accounting for truncation and round-off errors.This representation is propagated from inputs to outputs by means of a suitable redefinition of the involved calculations, in both scalar and matrix form. The polynomial provides a parametric approximation of the variable, while the remainder gives a conservative bound of the associated error. The combination between the bound of the polynomial and the interval remainder provides an estimation of the overall (worst-case) bound of the variable. After a preliminary theoretical background, the tool (freely available online) is introduced step by step along with the necessary theoretical notions. As a validation, it is applied to illustrative examples as well as to real-life problems of relevance in electrical engineering applications, specifically a quarter-car model and a continuous time linear equalizer
    • ā€¦
    corecore