421 research outputs found

    Realizing Fully Secure Unrestricted ID-Based Ring Signature in the Standard Model Based on HIBE

    Full text link

    Security and Privacy Preservation in Mobile Social Networks

    Get PDF
    Social networking extending the social circle of people has already become an important integral part of our daily lives. As reported by ComScore, social networking sites such as Facebook and Twitter have reached 82 percent of the world's online population, representing 1.2 billion users around the world. In the meantime, fueled by the dramatic advancements of smartphones and the ubiquitous connections of Bluetooth/WiFi/3G/LTE networks, social networking further becomes available for mobile users and keeps them posted on the up-to-date worldwide news and messages from their friends and families anytime anywhere. The convergence of social networking, advanced smartphones, and stable network infrastructures brings us a pervasive and omnipotent communication platform, named mobile social network (MSN), helping us stay connected better than ever. In the MSN, multiple communication techniques help users to launch a variety of applications in multiple communication domains including single-user domain, two-user domain, user-chain domain, and user-star domain. Within different communication domains, promising mobile applications are fostered. For example, nearby friend search application can be launched in the two-user or user-chain domains to help a user find other physically-close peers who have similar interests and preferences; local service providers disseminate advertising information to nearby users in the user-star domain; and health monitoring enables users to check the physiological signals in the single-user domain. Despite the tremendous benefits brought by the MSN, it still faces many technique challenges among of which security and privacy protections are the most important ones as smartphones are vulnerable to security attacks, users easily neglect their privacy preservation, and mutual trust relationships are difficult to be established in the MSN. In this thesis, we explore the unique characteristics and study typical research issues of the MSN. We conduct our research with a focus on security and privacy preservation while considering human factors. Specifically, we consider the profile matching application in the two-user domain, the cooperative data forwarding in the user-chain domain, the trustworthy service evaluation application in the user-star domain, and the healthcare monitoring application in the single-user domain. The main contributions are, i) considering the human comparison behavior and privacy requirements, we first propose a novel family of comparison-based privacy-preserving profile matching (PPM) protocols. The proposed protocols enable two users to obtain comparison results of attribute values in their profiles, while the attribute values are not disclosed. Taking user anonymity requirement as an evaluation metric, we analyze the anonymity protection of the proposed protocols. From the analysis, we found that the more comparison results are disclosed, the less anonymity protection is achieved by the protocol. Further, we explore the pseudonym strategy and an anonymity enhancing technique where users could be self-aware of the anonymity risk level and take appropriate actions when needed; ii) considering the inherent MSN nature --- opportunistic networking, we propose a cooperative privacy-preserving data forwarding (PDF) protocol to help users forward data to other users. We indicate that privacy and effective data forwarding are two conflicting goals: the cooperative data forwarding could be severely interrupted or even disabled when the privacy preservation of users is applied, because without sharing personal information users become unrecognizable to each other and the social interactions are no longer traceable. We explore the morality model of users from classic social theory, and use game-theoretic approach to obtain the optimal data forwarding strategy. Through simulation results, we show that the proposed cooperative data strategy can achieve both the privacy preservation and the forwarding efficiency; iii) to establish the trust relationship in a distributed MSN is a challenging task. We propose a trustworthy service evaluation (TSE) system, to help users exchange their service reviews toward local vendors. However, vendors and users could be the potential attackers aiming to disrupt the TSE system. We then consider the review attacks, i.e., vendors rejecting and modifying the authentic reviews of users, and the Sybil attacks, i.e., users abusing their pseudonyms to generate fake reviews. To prevent these attacks, we explore the token technique, the aggregate signature, and the secret sharing techniques. Simulation results show the security and the effectiveness of the TSE system can be guaranteed; iv) to improve the efficiency and reliability of communications in the single-user domain, we propose a prediction-based secure and reliable routing framework (PSR). It can be integrated with any specific routing protocol to improve the latter's reliability and prevent data injection attacks during data communication. We show that the regularity of body gesture can be learned and applied by body sensors such that the route with the highest predicted link quality can always be chose for data forwarding. The security analysis and simulation results show that the PSR significantly increases routing efficiency and reliability with or without the data injection attacks

    Forward-secure hierarchical predicate encryption

    Get PDF
    Secrecy of decryption keys is an important pre-requisite for security of any encryption scheme and compromised private keys must be immediately replaced. \emph{Forward Security (FS)}, introduced to Public Key Encryption (PKE) by Canetti, Halevi, and Katz (Eurocrypt 2003), reduces damage from compromised keys by guaranteeing confidentiality of messages that were encrypted prior to the compromise event. The FS property was also shown to be achievable in (Hierarchical) Identity-Based Encryption (HIBE) by Yao, Fazio, Dodis, and Lysyanskaya (ACM CCS 2004). Yet, for emerging encryption techniques, offering flexible access control to encrypted data, by means of functional relationships between ciphertexts and decryption keys, FS protection was not known to exist.\smallskip In this paper we introduce FS to the powerful setting of \emph{Hierarchical Predicate Encryption (HPE)}, proposed by Okamoto and Takashima (Asiacrypt 2009). Anticipated applications of FS-HPE schemes can be found in searchable encryption and in fully private communication. Considering the dependencies amongst the concepts, our FS-HPE scheme implies forward-secure flavors of Predicate Encryption and (Hierarchical) Attribute-Based Encryption.\smallskip Our FS-HPE scheme guarantees forward security for plaintexts and for attributes that are hidden in HPE ciphertexts. It further allows delegation of decrypting abilities at any point in time, independent of FS time evolution. It realizes zero-inner-product predicates and is proven adaptively secure under standard assumptions. As the ``cross-product" approach taken in FS-HIBE is not directly applicable to the HPE setting, our construction resorts to techniques that are specific to existing HPE schemes and extends them with what can be seen as a reminiscent of binary tree encryption from FS-PKE

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    Attribute-Based Signatures

    Get PDF
    We introduce Attribute-Based Signatures (ABS), a versatile primitive that allows a party to sign a message with fine-grained control over identifying information. In ABS, a signer, who possesses a set of attributes from the authority, can sign a message with a predicate that is satisfied by his attributes. The signature reveals no more than the fact that a single user with some set of attributes satisfying the predicate has attested to the message. In particular, the signature hides the attributes used to satisfy the predicate and any identifying information about the signer (that could link multiple signatures as being from the same signer). Furthermore, users cannot collude to pool their attributes together. We give a general framework for constructing ABS schemes, then show several practical instantia-tions based on groups with bilinear pairing operations, under standard assumptions. We describe several practical problems that motivated this work, and how ABS can be used to solve them

    Adaptively Secure Broadcast Encryption with Small System Parameters

    Get PDF
    We build the first public-key broadcast encryption systems that simultaneously achieve adaptive security against arbitrary number of colluders, have small system parameters, and have security proofs that do not rely on knowledge assumptions or complexity leveraging. Our schemes are built from either composite order multilinear maps or obfuscation and enjoy a ciphertext overhead, private key size, and public key size that are all poly-logarithmic in the total number of users. Previous broadcast schemes with similar parameters are either proven secure in a weaker static model, or rely on non-falsifiable knowledge assumptions

    Novel Techniques for Secure Use of Public Cloud Computing Resources

    Get PDF
    The federal government has an expressed interest in moving data and services to third party service providers in order to take advantage of the flexibility, scalability, and potential cost savings. This approach is called cloud computing. The thesis for this research is that efficient techniques exist to support the secure use of public cloud computing resources by a large, federated enterprise. The primary contributions of this research are the novel cryptographic system MA-AHASBE (Multi-Authority Anonymous Hierarchical Attribute-Set Based Encryption), and the techniques used to incorporate MA-AHASBE in a real world application. Performance results indicate that while there is a cost associated with enforcing the suggested security model, the cost is not unreasonable and the benefits in security can be significant. The contributions of this research give the DoD additional tools for supporting the mission while taking advantage of the cost efficient public cloud computing resources that are becoming widely available

    New Conditional Privacy-preserving Encryption Schemes in Communication Network

    Get PDF
    Nowadays the communication networks have acted as nearly the most important fundamental infrastructure in our human society. The basic service provided by the communication networks are like that provided by the ubiquitous public utilities. For example, the cable television network provides the distribution of information to its subscribers, which is much like the water or gas supply systems which distribute the commodities to citizens. The communication network also facilitates the development of many network-based applications such as industrial pipeline controlling in the industrial network, voice over long-term evolution (VoLTE) in the mobile network and mixture reality (MR) in the computer network, etc. Since the communication network plays such a vital role in almost every aspect of our life, undoubtedly, the information transmitted over it should be guarded properly. Roughly, such information can be categorized into either the communicated message or the sensitive information related to the users. Since we already got cryptographical tools, such as encryption schemes, to ensure the confidentiality of communicated messages, it is the sensitive personal information which should be paid special attentions to. Moreover, for the benefit of reducing the network burden in some instances, it may require that only communication information among legitimated users, such as streaming media service subscribers, can be stored and then relayed in the network. In this case, the network should be empowered with the capability to verify whether the transmitted message is exchanged between legitimated users without leaking the privacy of those users. Meanwhile, the intended receiver of a transmitted message should be able to identify the exact message sender for future communication. In order to cater to those requirements, we re-define a notion named conditional user privacy preservation. In this thesis, we investigate the problem how to preserve user conditional privacy in pubic key encryption schemes, which are used to secure the transmitted information in the communication networks. In fact, even the term conditional privacy preservation has appeared in existing works before, there still have great differences between our conditional privacy preservation definition and the one proposed before. For example, in our definition, we do not need a trusted third party (TTP) to help tracing the sender of a message. Besides, the verification of a given encrypted message can be done without any secret. In this thesis, we also introduce more desirable features to our redefined notion user conditional privacy preservation. In our second work, we consider not only the conditional privacy of the message sender but also that of the intended message receiver. This work presents a new encryption scheme which can be implemented in communication networks where there exists a blacklist containing a list of blocked communication channels, and each of them is established by a pair of sender and receiver. With this encryption scheme, a verifier can confirm whether one ciphertext is belonging to a legitimated communication channel without knowing the exact sender and receiver of that ciphertext. With our two previous works, for a given ciphertext, we ensure that no one except its intended receiver can identify the sender. However, the receiver of one message may behave dishonest when it tries to retrieve the real message sender, which incurs the problem that the receiver of a message might manipulate the origin of the message successfully for its own benefit. To tackle this problem, we present a novel encryption scheme in our third work. Apart from preserving user conditional privacy, this work also enforces the receiver to give a publicly verifiable proof so as to convince others that it is honest during the process of identifying the actual message sender. In our forth work, we show our special interest in the access control encryption, or ACE for short, and find this primitive can inherently achieve user conditional privacy preservation to some extent. we present a newly constructed ACE scheme in this work, and our scheme has advantages over existing ACE schemes in two aspects. Firstly, our ACE scheme is more reliable than existing ones since we utilize a distributed sanitizing algorithm and thus avoid the so called single point failure happened in ACE systems with only one sanitizer. Then, since the ciphertext and key size of our scheme is more compact than that of the existing ACE schemes, our scheme enjoys better scalability

    Data security in cloud storage services

    Get PDF
    Cloud Computing is considered to be the next-generation architecture for ICT where it moves the application software and databases to the centralized large data centers. It aims to offer elastic IT services where clients can benefit from significant cost savings of the pay-per-use model and can easily scale up or down, and do not have to make large investments in new hardware. However, the management of the data and services in this cloud model is under the control of the provider. Consequently, the cloud clients have less control over their outsourced data and they have to trust cloud service provider to protect their data and infrastructure from both external and internal attacks. This is especially true with cloud storage services. Nowadays, users rely on cloud storage as it offers cheap and unlimited data storage that is available for use by multiple devices (e.g. smart phones, tablets, notebooks, etc.). Besides famous cloud storage providers, such as Amazon, Google, and Microsoft, more and more third-party cloud storage service providers are emerging. These services are dedicated to offering more accessible and user friendly storage services to cloud customers. Examples of these services include Dropbox, Box.net, Sparkleshare, UbuntuOne or JungleDisk. These cloud storage services deliver a very simple interface on top of the cloud storage provided by storage service providers. File and folder synchronization between different machines, sharing files and folders with other users, file versioning as well as automated backups are the key functionalities of these emerging cloud storage services. Cloud storage services have changed the way users manage and interact with data outsourced to public providers. With these services, multiple subscribers can collaboratively work and share data without concerns about their data consistency, availability and reliability. Although these cloud storage services offer attractive features, many customers have not adopted these services. Since data stored in these services is under the control of service providers resulting in confidentiality and security concerns and risks. Therefore, using cloud storage services for storing valuable data depends mainly on whether the service provider can offer sufficient security and assurance to meet client requirements. From the way most cloud storage services are constructed, we can notice that these storage services do not provide users with sufficient levels of security leading to an inherent risk on users\u27 data from external and internal attacks. These attacks take the form of: data exposure (lack of data confidentiality); data tampering (lack of data integrity); and denial of data (lack of data availability) by third parties on the cloud or by the cloud provider himself. Therefore, the cloud storage services should ensure the data confidentiality in the following state: data in motion (while transmitting over networks), data at rest (when stored at provider\u27s disks). To address the above concerns, confidentiality and access controllability of outsourced data with strong cryptographic guarantee should be maintained. To ensure data confidentiality in public cloud storage services, data should be encrypted data before it is outsourced to these services. Although, users can rely on client side cloud storage services or software encryption tools for encrypting user\u27s data; however, many of these services fail to achieve data confidentiality. Box, for example, does not encrypt user files via SSL and within Box servers. Client side cloud storage services can intentionally/unintentionally disclose user decryption keys to its provider. In addition, some cloud storage services support convergent encryption for encrypting users\u27 data exposing it to “confirmation of a file attack. On the other hand, software encryption tools use full-disk encryption (FDE) which is not feasible for cloud-based file sharing services, because it encrypts the data as virtual hard disks. Although encryption can ensure data confidentiality; however, it fails to achieve fine-grained access control over outsourced data. Since, public cloud storage services are managed by un-trusted cloud service provider, secure and efficient fine-grained access control cannot be realized through these services as these policies are managed by storage services that have full control over the sharing process. Therefore, there is not any guarantee that they will provide good means for efficient and secure sharing and they can also deduce confidential information about the outsourced data and users\u27 personal information. In this work, we would like to improve the currently employed security measures for securing data in cloud store services. To achieve better data confidentiality for data stored in the cloud without relying on cloud service providers (CSPs) or putting any burden on users, in this thesis, we designed a secure cloud storage system framework that simultaneously achieves data confidentiality, fine-grained access control on encrypted data and scalable user revocation. This framework is built on a third part trusted (TTP) service that can be employed either locally on users\u27 machine or premises, or remotely on top of cloud storage services. This service shall encrypts users data before uploading it to the cloud and decrypts it after downloading from the cloud; therefore, it remove the burden of storing, managing and maintaining encryption/decryption keys from data owner\u27s. In addition, this service only retains user\u27s secret key(s) not data. Moreover, to ensure high security for these keys, it stores them on hardware device. Furthermore, this service combines multi-authority ciphertext policy attribute-based encryption (CP-ABE) and attribute-based Signature (ABS) for achieving many-read-many-write fine-grained data access control on storage services. Moreover, it efficiently revokes users\u27 privileges without relying on the data owner for re-encrypting massive amounts of data and re-distributing the new keys to the authorized users. It removes the heavy computation of re-encryption from users and delegates this task to the cloud service provider (CSP) proxy servers. These proxy servers achieve flexible and efficient re-encryption without revealing underlying data to the cloud. In our designed architecture, we addressed the problem of ensuring data confidentiality against cloud and against accesses beyond authorized rights. To resolve these issues, we designed a trusted third party (TTP) service that is in charge of storing data in an encrypted format in the cloud. To improve the efficiency of the designed architecture, the service allows the users to choose the level of severity of the data and according to this level different encryption algorithms are employed. To achieve many-read-many-write fine grained access control, we merge two algorithms (multi-authority ciphertext policy attribute-based encryption (MA- CP-ABE) and attribute-based Signature (ABS)). Moreover, we support two levels of revocation: user and attribute revocation so that we can comply with the collaborative environment. Last but not least, we validate the effectiveness of our design by carrying out a detailed security analysis. This analysis shall prove the correctness of our design in terms of data confidentiality each stage of user interaction with the cloud

    Crytographic applications of bilinear maps

    Get PDF
    Bilinear maps have become an important new item in the cryptographer’s toolkit. They first came to prominence when they were used by Menezes, Okamoto and Vanstone to help solve the elliptic curve discrete logarithm problem on elliptic curves of small embedding degree. In 1984, Shamir developed the first identity based signature scheme, and posed the construction of an identity based encryption scheme as an open problem [118]. Subsequently identity based identification and identity based key agreement schemes were proposed. However, identity based encryption remained an open problem. In 2000, Sakai, Ohgishi and Kasahara used bilinear maps to implement an efficient identity based non-interactive key agreement and identity based digital signature [111]. In 2001, some 17 years after it was suggested, Boneh and Franklin proposed the first efficient identity based encryption scheme, constructed using bilinear maps [31]. In this thesis we review some of the numerous cryptographic protocols that have been constructed using bilinear maps. We first give a review of public key cryptography. We then review the mathematics behind the two known bilinear maps, the Weil and Tate pairings, including several improvements suggested m [67, 14]. We develop a Java library to implement pairing based cryptography. In Ch 4 we look at some of the cryptographically hard problems that arise from bilinear maps. In Ch 5 we review identity based signature schemes and present the fastest known scheme. In Ch 6 we review some encryption schemes, make some observations that help improve the performance of many identity based cryptosystems, and propose the fastest scheme for public key encryption with keyword search. In Ch 7 we review identity based key agreements and propose the fastest scheme secure in a modified Bellare-Rogaway model [19]. In Ch 8 we review identity based signcryption schemes and present the fastest known scheme
    corecore