8,355 research outputs found

    Comparing and evaluating extended Lambek calculi

    Get PDF
    Lambeks Syntactic Calculus, commonly referred to as the Lambek calculus, was innovative in many ways, notably as a precursor of linear logic. But it also showed that we could treat our grammatical framework as a logic (as opposed to a logical theory). However, though it was successful in giving at least a basic treatment of many linguistic phenomena, it was also clear that a slightly more expressive logical calculus was needed for many other cases. Therefore, many extensions and variants of the Lambek calculus have been proposed, since the eighties and up until the present day. As a result, there is now a large class of calculi, each with its own empirical successes and theoretical results, but also each with its own logical primitives. This raises the question: how do we compare and evaluate these different logical formalisms? To answer this question, I present two unifying frameworks for these extended Lambek calculi. Both are proof net calculi with graph contraction criteria. The first calculus is a very general system: you specify the structure of your sequents and it gives you the connectives and contractions which correspond to it. The calculus can be extended with structural rules, which translate directly into graph rewrite rules. The second calculus is first-order (multiplicative intuitionistic) linear logic, which turns out to have several other, independently proposed extensions of the Lambek calculus as fragments. I will illustrate the use of each calculus in building bridges between analyses proposed in different frameworks, in highlighting differences and in helping to identify problems.Comment: Empirical advances in categorial grammars, Aug 2015, Barcelona, Spain. 201

    Consensus in multi-agent systems with second-order dynamics and non-periodic sampled-data exchange

    Full text link
    In this paper consensus in second-order multi-agent systems with a non-periodic sampled-data exchange among agents is investigated. The sampling is random with bounded inter-sampling intervals. It is assumed that each agent has exact knowledge of its own state at all times. The considered local interaction rule is PD-type. The characterization of the convergence properties exploits a Lyapunov-Krasovskii functional method, sufficient conditions for stability of the consensus protocol to a time-invariant value are derived. Numerical simulations are presented to corroborate the theoretical results.Comment: The 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA'2014), Barcelona (Spain

    T_c for dilute Bose gases: beyond leading order in 1/N

    Full text link
    Baym, Blaizot, and Zinn-Justin have recently used the large N approximation to calculate the effect of interactions on the transition temperature of dilute Bose gases. We extend their calculation to next-to-leading-order in 1/N and find a relatively small correction of -26% to the leading-order result. This suggests that the large N approximation works surprisingly well in this application.Comment: 21 pages, 7+1 figures; an embarassing factor of 2 has been corrected in the evaluation of one diagram, changing the previous +18% result for the NLO correction to -26

    Two loop renormalization of the magnetic coupling and non-perturbative sector in hot QCD

    Full text link
    The goal of this paper is two-fold. The first aim is to present a detailed version of the computation of the two-loop renormalization of the magnetic coupling in hot QCD. The second is to compare with lattice simulations the string tension of a spatial Wilson loop using the result of our two-loop computationComment: 32 page

    Thermodynamic graph-rewriting

    Get PDF
    We develop a new thermodynamic approach to stochastic graph-rewriting. The ingredients are a finite set of reversible graph-rewriting rules called generating rules, a finite set of connected graphs P called energy patterns and an energy cost function. The idea is that the generators define the qualitative dynamics, by showing which transformations are possible, while the energy patterns and cost function specify the long-term probability π\pi of any reachable graph. Given the generators and energy patterns, we construct a finite set of rules which (i) has the same qualitative transition system as the generators; and (ii) when equipped with suitable rates, defines a continuous-time Markov chain of which π\pi is the unique fixed point. The construction relies on the use of site graphs and a technique of `growth policy' for quantitative rule refinement which is of independent interest. This division of labour between the qualitative and long-term quantitative aspects of the dynamics leads to intuitive and concise descriptions for realistic models (see the examples in S4 and S5). It also guarantees thermodynamical consistency (AKA detailed balance), otherwise known to be undecidable, which is important for some applications. Finally, it leads to parsimonious parameterizations of models, again an important point in some applications

    Renormalization of Matter Field Theories on the Lattice and the Flow Equation

    Get PDF
    We give a new proof of the renormalizability of a class of matter field theories on a space-time lattice; in particular we consider Ď•4\phi^4 and massive Yukawa theories with Wilson fermions. We use the Polchinski approach to renormalization, which is based on the Wilson flow equation; this approach is substantially simpler than the BPHZ method, applied to the lattice by Reisz. We discuss matter theories with staggered fermions. In particular we analyse a simple kind of staggered fermions with minimal doubling, using which we prove the renormalizability of a chiral sigma model with exact chiral symmetry on the lattice.Comment: 32 pages, Late
    • …
    corecore