378,448 research outputs found

    Symmetry constraints on phonon dispersion in graphene

    Full text link
    Taking into account the constraints imposed by the lattice symmetry, we calculate the phonon dispersion for graphene with interactions between the first, second, and third nearest neighbors in the framework of the Born--von Karman model. Analytical expressions obtained for the dispersion of the out-of-plane (bending) modes give the nonzero sound velocity. The dispersion of four in-plane modes is determined by coupled equations. Values of the force constants are found in fitting with frequencies at critical points and with elastic constants measured on graphite.Comment: 5 pages, 2 figure

    Jet-induced gauge field instabilities in the quark-gluon plasma

    Full text link
    We discuss the properties of the collective modes of a system composed by a thermalized quark-gluon plasma traversed by a relativistic jet of partons. The transport equations obeyed by the components of the plasma and of the jet are studied in the Vlasov approximation. Assuming that the partons in the jet can be described with a tsunami-like distribution function we derive the expressions of the dispersion law of the collective modes. Then the behavior of the unstable gauge modes of the system is analyzed for various values of the velocity of the jet, of the momentum of the collective modes and of the angle between these two quantities. We find that the most unstable modes are those with momentum orthogonal to the velocity of the jet, and the effect is stronger for ultrarelativistic jet velocities. Our results suggest a new possible collective mechanism for the description of the jet quenching phenomena in heavy ion collisions.Comment: 7 pages; invited talk at the YITP symposium on "Fundamental Problems in Hot and/or dense QCD", Kyoto, Japan, 3-6 March 200

    The Nuclear Scissors Mode in a Solvable Model

    Get PDF
    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance is studied in a model with separable quadrupole-quadrupole residual interactions. The method of Wigner function moments is applied to derive the dynamical equations for angular momentum and quadrupole moment. Analytical expressions for energies, B(M1)- and B(E2)-values, sum rules and flow-patterns of both modes are found for arbitrary values of the deformation parameter. Some predictions for the case of superdeformation are given. The subtle nature of the phenomenon and its peculiarities are clarified.Comment: 49 pages, 3 figures. We corrected the force constant which influenced mostly the results of the superdeformed region. Flow patterns are left without any change

    Jet-induced gauge field instabilities in the quark-gluon plasma: A kinetic theory approach

    Full text link
    We discuss the properties of the collective modes of a system composed by a thermalized quark-gluon plasma traversed by a relativistic jet of partons. The transport equations obeyed by the components of the plasma and of the jet are studied in the Vlasov approximation. Assuming that the partons in the jet can be described with a tsunami-like distribution function we derive the expressions of the dispersion law of the collective modes. Then the behavior of the unstable gauge modes of the system is analyzed for various values of the velocity of the jet, of the momentum of the collective modes and of the angle between these two quantities. We find that the most unstable modes are those with momentum orthogonal to the velocity of the jet and that these instabilities appear when the velocity of the jet is higher than a threshold value, which depends on the plasma and jet frequencies. The results obtained within the Vlasov approximation are compared with the corresponding results obtained using a chromohydrodynamical approach.The effect we discuss here suggests a possible collective mechanism for the description of the jet quenching phenomena in heavy ion collisions.Comment: 13 pages, 6 figure

    Frequency shift and mode coupling in the nonlinear dynamics of a Bose condensed gas

    Full text link
    We investigate the behavior of large amplitude oscillations of a trapped Bose-condensed gas of alkali atoms at zero temperature, by solving the equations of hydrodynamics for collective modes. Due to the atom-atom interaction, the equations of motion are nonlinear and give rise to significant frequency shift and mode coupling. We provide analytic expressions for the frequency shift, pointing out the crucial role played by the anisotropy of the confining potential. For special values of the anisotropy parameter the mode coupling is particularly strong and the frequency shift becomes large, revealing a peculiar behavior of the Bose-condensed gas. Consequences on the theory of collapse and revival of collective excitations are also discussed.Comment: 10 pages, RevTeX, 9 figures, more info at http://www-phys.science.unitn.it/bec/BEC.htm
    • …
    corecore