17,563 research outputs found

    Online control of AC/AC converter based SHEPWM technique

    Get PDF
    Conventional online control of AC/AC converter controlled by the selective harmonic elimination pulse width modulation technique (SHEPWM) is based on storing the offline calculated switching angle values in a form of lookup table. Then the required switching pattern of certain modulation index (M) is searched through the lookup table. This methodology suffers from limited system flexibility. This paper introduces a novel implementation scheme based on real-time calculation of the required SHEPWM switching pattern with linear control of the fundamental voltage component magnitude based on curve fitting technique for the exact switching angle trajectories. The accuracy of the derived polynomials is evaluated by calculating converter performance parameters using the approximated switching angles solutions obtained from the introduced method and the exact switching angles solutions. Detail of the introduced methodology is presented. Simulation and experimental results have been carried out to confirm the validity of the introduced algorithm

    Sensor selection based on principal component analysis for fault detection in wind turbines

    Get PDF
    Growing interest for improving the reliability of safety-critical structures, such as wind turbines, has led to the advancement of structural health monitoring (SHM). Existing techniques for fault detection can be broadly classified into two major categories: model-based methods and signal processing-based methods. This work focuses in the signal-processing-based fault detection by using principal component analysis (PCA) as a way to condense and extract information from the collected signals. In particular, the goal of this work is to select a reduced number of sensors to be used. From a practical point of view, a reduced number of sensors installed in the structure leads to a reduced cost of installation and maintenance. Besides, from a computational point of view, less sensors implies lower computing time, thus the detection time is shortened. The overall strategy is to firstly create a PCA model measuring a healthy wind turbine. Secondly, with the model, and for each fault scenario and each possible subset of sensors, it measures the Euclidean distance between the arithmetic mean of the projections into the PCA model that come from the healthy wind turbine and the mean of the projections that come from the faulty one. Finally, it finds the subset of sensors that separate the most the data coming from the healthy wind turbine and the data coming from the faulty one. Numerical simulations using a sophisticated wind turbine model (a modern 5MW turbine implemented in the FAST software) show the performance of the proposed method under actuators (pitch and torque) and sensors (pitch angle measurement) faults of different type: fixed value, gain factor, offset and changed dynamics.Postprint (published version

    An assembly oriented design framework for product structure engineering and assembly sequence planning

    Get PDF
    The paper describes a novel framework for an assembly-oriented design (AOD) approach as a new functional product lifecycle management (PLM) strategy, by considering product design and assembly sequence planning phases concurrently. Integration issues of product life cycle into the product development process have received much attention over the last two decades, especially at the detailed design stage. The main objective of the research is to define assembly sequence into preliminary design stages by introducing and applying assembly process knowledge in order to provide an assembly context knowledge to support life-oriented product development process, particularly for product structuring. The proposed framework highlights a novel algorithm based on a mathematical model integrating boundary conditions related to DFA rules, engineering decisions for assembly sequence and the product structure definition. This framework has been implemented in a new system called PEGASUS considered as an AOD module for a PLM system. A case study of applying the framework to a catalytic-converter and diesel particulate filter sub-system, belonging to an exhaust system from an industrial automotive supplier, is introduced to illustrate the efficiency of the proposed AOD methodology

    Risk and Machine Protection for Stored Magnetic and Beam Energies

    Full text link
    Risk is a fundamental consideration when designing electronic systems. For most systems a view of risk can assist in setting design objectives, whereas both a qualitative and quantitative understanding of risk is mandatory when considering protection systems. This paper gives an overview of the risks due to stored magnetic and beam energies in high-energy physics, and shows how a risk-based approach can be used to design new systems mitigating these risks, using a lifecycle inspired by IEC 61508. Designing new systems in high-energy physics can be challenging as new and novel techniques are difficult to quantify and predict. This paper shows how the same lifecycle approach can be used in reverse to analyse existing systems, following their operation and first experiences.Comment: 19 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    A Robust Consensus Algorithm for Current Sharing and Voltage Regulation in DC Microgrids

    Get PDF
    In this paper a novel distributed control algorithm for current sharing and voltage regulation in Direct Current (DC) microgrids is proposed. The DC microgrid is composed of several Distributed Generation units (DGUs), including Buck converters and current loads. The considered model permits an arbitrary network topology and is affected by unknown load demand and modelling uncertainties. The proposed control strategy exploits a communication network to achieve proportional current sharing using a consensus-like algorithm. Voltage regulation is achieved by constraining the system to a suitable manifold. Two robust control strategies of Sliding Mode (SM) type are developed to reach the desired manifold in a finite time. The proposed control scheme is formally analyzed, proving the achievement of proportional current sharing, while guaranteeing that the weighted average voltage of the microgrid is identical to the weighted average of the voltage references.Comment: 12 page

    Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier

    Get PDF
    Nowadays the H-bridge is one of the preferred solutions to connect DC loads or distributed sources to the single-phase grid. The control aims are: sinusoidal grid current with unity power factor and optimal DC voltage regulation capability. These objectives should be satisfied, regardless the conditions of the grid, the DC load/source and the converter nonlinearities. In this paper a passivity-based approach is thoroughly investigated proposing a damping-based solution for the error dynamics. Practical experiments with a real converter validate the analysis.
    • 

    corecore