524 research outputs found

    Models of transfinite provability logic

    Full text link
    For any ordinal \Lambda, we can define a polymodal logic GLP(\Lambda), with a modality [\xi] for each \xi<\Lambda. These represent provability predicates of increasing strength. Although GLP(\Lambda) has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities. Later, Icard defined a topological model for the same fragment which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary \Lambda. More generally, for each \Theta,\Lambda we build a Kripke model I(\Theta,\Lambda) and a topological model T(\Theta,\Lambda), and show that the closed fragment of GLP(\Lambda) is sound for both of these structures, as well as complete, provided \Theta is large enough

    Iterated reflection principles over full disquotational truth

    Get PDF
    Iterated reflection principles have been employed extensively to unfold epistemic commitments that are incurred by accepting a mathematical theory. Recently this has been applied to theories of truth. The idea is to start with a collection of Tarski-biconditionals and arrive by finitely iterated reflection at strong compositional truth theories. In the context of classical logic it is incoherent to adopt an initial truth theory in which A and 'A is true' are inter-derivable. In this article we show how in the context of a weaker logic, which we call Basic De Morgan Logic, we can coherently start with such a fully disquotational truth theory and arrive at a strong compositional truth theory by applying a natural uniform reflection principle a finite number of times

    Well-orders in the transfinite Japaridze algebra

    Full text link
    This paper studies the transfinite propositional provability logics \glp_\Lambda and their corresponding algebras. These logics have for each ordinal ξ<Λ\xi< \Lambda a modality \la \alpha \ra. We will focus on the closed fragment of \glp_\Lambda (i.e., where no propositional variables occur) and \emph{worms} therein. Worms are iterated consistency expressions of the form \la \xi_n\ra \ldots \la \xi_1 \ra \top. Beklemishev has defined well-orderings <ξ<_\xi on worms whose modalities are all at least ξ\xi and presented a calculus to compute the respective order-types. In the current paper we present a generalization of the original <ξ<_\xi orderings and provide a calculus for the corresponding generalized order-types oξo_\xi. Our calculus is based on so-called {\em hyperations} which are transfinite iterations of normal functions. Finally, we give two different characterizations of those sequences of ordinals which are of the form \la {\formerOmega}_\xi (A) \ra_{\xi \in \ord} for some worm AA. One of these characterizations is in terms of a second kind of transfinite iteration called {\em cohyperation.}Comment: Corrected a minor but confusing omission in the relation between Veblen progressions and hyperation

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page
    • …
    corecore