887 research outputs found

    Simplicial Models for the Epistemic Logic of Faulty Agents

    Full text link
    In recent years, several authors have been investigating simplicial models, a model of epistemic logic based on higher-dimensional structures called simplicial complexes. In the original formulation, simplicial models were always assumed to be pure, meaning that all worlds have the same dimension. This is equivalent to the standard S5n semantics of epistemic logic, based on Kripke models. By removing the assumption that models must be pure, we can go beyond the usual Kripke semantics and study epistemic logics where the number of agents participating in a world can vary. This approach has been developed in a number of papers, with applications in fault-tolerant distributed computing where processes may crash during the execution of a system. A difficulty that arises is that subtle design choices in the definition of impure simplicial models can result in different axioms of the resulting logic. In this paper, we classify those design choices systematically, and axiomatize the corresponding logics. We illustrate them via distributed computing examples of synchronous systems where processes may crash

    Reasoning about the Reliability of Diverse Two-Channel Systems in which One Channel is "Possibly Perfect"

    Get PDF
    This paper considers the problem of reasoning about the reliability of fault-tolerant systems with two "channels" (i.e., components) of which one, A, supports only a claim of reliability, while the other, B, by virtue of extreme simplicity and extensive analysis, supports a plausible claim of "perfection." We begin with the case where either channel can bring the system to a safe state. We show that, conditional upon knowing pA (the probability that A fails on a randomly selected demand) and pB (the probability that channel B is imperfect), a conservative bound on the probability that the system fails on a randomly selected demand is simply pA.pB. That is, there is conditional independence between the events "A fails" and "B is imperfect." The second step of the reasoning involves epistemic uncertainty about (pA, pB) and we show that under quite plausible assumptions, a conservative bound on system pfd can be constructed from point estimates for just three parameters. We discuss the feasibility of establishing credible estimates for these parameters. We extend our analysis from faults of omission to those of commission, and then combine these to yield an analysis for monitored architectures of a kind proposed for aircraft

    Changing Observations in Epistemic Temporal Logic

    Full text link
    We study dynamic changes of agents' observational power in logics of knowledge and time. We consider CTL*K, the extension of CTL* with knowledge operators, and enrich it with a new operator that models a change in an agent's way of observing the system. We extend the classic semantics of knowledge for perfect-recall agents to account for changes of observation, and we show that this new operator strictly increases the expressivity of CTL*K. We reduce the model-checking problem for our logic to that for CTL*K, which is known to be decidable. This provides a solution to the model-checking problem for our logic, but its complexity is not optimal. Indeed we provide a direct decision procedure with better complexity

    The Role of A Priori Belief in the Design and Analysis of Fault-Tolerant Distributed Systems

    Get PDF
    The debate around the notions of a priori knowledge and a posteriori knowledge has proven crucial for the development of many fields in philosophy, such as metaphysics, epistemology, metametaphysics etc. We advocate that the recent debate on the two notions is also fruitful for man-made distributed computing systems and for the epistemic analysis thereof. Following a recently proposed modal and fallibilistic account of a priori knowledge, we elaborate the corresponding concept of a priori belief: We propose a rich taxonomy of types of a priori beliefs and their role for the different agents that participate in the system engineering process, which match the existing view exceedingly well and are particularly promising for explaining and dealing with unexpected behaviors in fault-tolerant distributed systems. Developing such a philosophical foundation will provide a sound basis for eventually implementing our ideas in a suitable epistemic reasoning and analysis framework and, hence, constitutes a mandatory first step for developing methods and tools to cope with the various challenges that emerge in such systems

    Dagstuhl News January - December 2006

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic
    • …
    corecore