510 research outputs found

    Zenoness for Timed Pushdown Automata

    Full text link
    Timed pushdown automata are pushdown automata extended with a finite set of real-valued clocks. Additionaly, each symbol in the stack is equipped with a value representing its age. The enabledness of a transition may depend on the values of the clocks and the age of the topmost symbol. Therefore, dense-timed pushdown automata subsume both pushdown automata and timed automata. We have previously shown that the reachability problem for this model is decidable. In this paper, we study the zenoness problem and show that it is EXPTIME-complete.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Analyzing Timed Systems Using Tree Automata

    Full text link
    Timed systems, such as timed automata, are usually analyzed using their operational semantics on timed words. The classical region abstraction for timed automata reduces them to (untimed) finite state automata with the same time-abstract properties, such as state reachability. We propose a new technique to analyze such timed systems using finite tree automata instead of finite word automata. The main idea is to consider timed behaviors as graphs with matching edges capturing timing constraints. When a family of graphs has bounded tree-width, they can be interpreted in trees and MSO-definable properties of such graphs can be checked using tree automata. The technique is quite general and applies to many timed systems. In this paper, as an example, we develop the technique on timed pushdown systems, which have recently received considerable attention. Further, we also demonstrate how we can use it on timed automata and timed multi-stack pushdown systems (with boundedness restrictions)

    Timed pushdown automata revisited

    Full text link
    This paper contains two results on timed extensions of pushdown automata (PDA). As our first result we prove that the model of dense-timed PDA of Abdulla et al. collapses: it is expressively equivalent to dense-timed PDA with timeless stack. Motivated by this result, we advocate the framework of first-order definable PDA, a specialization of PDA in sets with atoms, as the right setting to define and investigate timed extensions of PDA. The general model obtained in this way is Turing complete. As our second result we prove NEXPTIME upper complexity bound for the non-emptiness problem for an expressive subclass. As a byproduct, we obtain a tight EXPTIME complexity bound for a more restrictive subclass of PDA with timeless stack, thus subsuming the complexity bound known for dense-timed PDA.Comment: full technical report of LICS'15 pape

    Decision Problems for Deterministic Pushdown Automata on Infinite Words

    Full text link
    The article surveys some decidability results for DPDAs on infinite words (omega-DPDA). We summarize some recent results on the decidability of the regularity and the equivalence problem for the class of weak omega-DPDAs. Furthermore, we present some new results on the parity index problem for omega-DPDAs. For the specification of a parity condition, the states of the omega-DPDA are assigned priorities (natural numbers), and a run is accepting if the highest priority that appears infinitely often during a run is even. The basic simplification question asks whether one can determine the minimal number of priorities that are needed to accept the language of a given omega-DPDA. We provide some decidability results on variations of this question for some classes of omega-DPDAs.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Superiority of one-way and realtime quantum machines and new directions

    Full text link
    In automata theory, the quantum computation has been widely examined for finite state machines, known as quantum finite automata (QFAs), and less attention has been given to the QFAs augmented with counters or stacks. Moreover, to our knowledge, there is no result related to QFAs having more than one input head. In this paper, we focus on such generalizations of QFAs whose input head(s) operate(s) in one-way or realtime mode and present many superiority of them to their classical counterparts. Furthermore, we propose some open problems and conjectures in order to investigate the power of quantumness better. We also give some new results on classical computation.Comment: A revised edition with some correction

    Adding Time to Pushdown Automata

    Full text link
    In this tutorial, we illustrate through examples how we can combine two classical models, namely those of pushdown automata (PDA) and timed automata, in order to obtain timed pushdown automata (TPDA). Furthermore, we describe how the reachability problem for TPDAs can be reduced to the reachability problem for PDAs.Comment: In Proceedings QFM 2012, arXiv:1212.345
    corecore