987 research outputs found

    Towards Top-Down Stereoscopic Image Quality Assessment via Stereo Attention

    Full text link
    Stereoscopic image quality assessment (SIQA) plays a crucial role in evaluating and improving the visual experience of 3D content. Existing binocular properties and attention-based methods for SIQA have achieved promising performance. However, these bottom-up approaches are inadequate in exploiting the inherent characteristics of the human visual system (HVS). This paper presents a novel network for SIQA via stereo attention, employing a top-down perspective to guide the quality assessment process. Our proposed method realizes the guidance from high-level binocular signals down to low-level monocular signals, while the binocular and monocular information can be calibrated progressively throughout the processing pipeline. We design a generalized Stereo AttenTion (SAT) block to implement the top-down philosophy in stereo perception. This block utilizes the fusion-generated attention map as a high-level binocular modulator, influencing the representation of two low-level monocular features. Additionally, we introduce an Energy Coefficient (EC) to account for recent findings indicating that binocular responses in the primate primary visual cortex are less than the sum of monocular responses. The adaptive EC can tune the magnitude of binocular response flexibly, thus enhancing the formation of robust binocular features within our framework. To extract the most discriminative quality information from the summation and subtraction of the two branches of monocular features, we utilize a dual-pooling strategy that applies min-pooling and max-pooling operations to the respective branches. Experimental results highlight the superiority of our top-down method in simulating the property of visual perception and advancing the state-of-the-art in the SIQA field. The code of this work is available at https://github.com/Fanning-Zhang/SATNet.Comment: 13 pages, 4 figure

    A full-reference stereoscopic image quality metric based on binocular energy and regression analysis

    Get PDF
    The recent developments of 3D media technology have brought to life numerous applications of interactive entertainment such as 3D cinema, 3DTV and gaming. However, due to the data intensive nature of 3D visual content, a number of research challenges have emerged. In order to optimise the end-to-end content life-cycle, from capture to processing and delivery, Quality of Experience (QoE) has become a major driving factor. This paper presents a human-centric approach to quality estimation of 3D visual content. A full reference quality assessment method for stereoscopic images is proposed. It is based on a Human Visual System (HVS) model to estimate subjective scores of registered stereoscopic images subjected to compression losses. The model has been trained with four publicly available registered stereoscopic image databases and a fixed relationship between subjective scores and the model has been determined. The high correlation of the relationship over a large number of stimuli has proven its consistency over the state-of-the-art

    Quality assessment metric of stereo images considering cyclopean integration and visual saliency

    Get PDF
    In recent years, there has been great progress in the wider use of three-dimensional (3D) technologies. With increasing sources of 3D content, a useful tool is needed to evaluate the perceived quality of the 3D videos/images. This paper puts forward a framework to evaluate the quality of stereoscopic images contaminated by possible symmetric or asymmetric distortions. Human visual system (HVS) studies reveal that binocular combination models and visual saliency are the two key factors for the stereoscopic image quality assessment (SIQA) metric. Therefore inspired by such findings in HVS, this paper proposes a novel saliency map in SIQA metric for the cyclopean image called “cyclopean saliency”, which avoids complex calculations and produces good results in detecting saliency regions. Moreover, experimental results show that our metric significantly outperforms conventional 2D quality metrics and yields higher correlations with human subjective judgment than the state-of-art SIQA metrics. 3D saliency performance is also compared with “cyclopean saliency” in SIQA. It is noticed that the proposed metric is applicable to both symmetric and asymmetric distortions. It can thus be concluded that the proposed SIQA metric can provide an effective evaluation tool to assess stereoscopic image quality

    Stereoscopic image quality assessment method based on binocular combination saliency model

    Get PDF
    The objective quality assessment of stereoscopic images plays an important role in three-dimensional (3D) technologies. In this paper, we propose an effective method to evaluate the quality of stereoscopic images that are afflicted by symmetric distortions. The major technical contribution of this paper is that the binocular combination behaviours and human 3D visual saliency characteristics are both considered. In particular, a new 3D saliency map is developed, which not only greatly reduces the computational complexity by avoiding calculation of the depth information, but also assigns appropriate weights to the image contents. Experimental results indicate that the proposed metric not only significantly outperforms conventional 2D quality metrics, but also achieves higher performance than the existing 3D quality assessment models

    Quality assessment for virtual reality technology based on real scene

    Get PDF
    Virtual reality technology is a new display technology, which provides users with real viewing experience. As known, most of the virtual reality display through stereoscopic images. However, image quality will be influenced by the collection, storage and transmission process. If the stereoscopic image quality in the virtual reality technology is seriously damaged, the user will feel uncomfortable, and this can even cause healthy problems. In this paper, we establish a set of accurate and effective evaluations for the virtual reality. In the preprocessing, we segment the original reference and distorted image into binocular regions and monocular regions. Then, the Information-weighted SSIM (IW-SSIM) or Information-weighted PSNR (IW-PSNR) values over the monocular regions are applied to obtain the IW-score. At the same time, the Stereo-weighted-SSIM (SW-SSIM) or Stereo-weighted-PSNR (SW-PSNR) can be used to calculate the SW-score. Finally, we pool the stereoscopic images score by combing the IW-score and SW-score. Experiments show that our method is very consistent with human subjective judgment standard in the evaluation of virtual reality technology

    Sparse representation based stereoscopic image quality assessment accounting for perceptual cognitive process

    Get PDF
    In this paper, we propose a sparse representation based Reduced-Reference Image Quality Assessment (RR-IQA) index for stereoscopic images from the following two perspectives: 1) Human visual system (HVS) always tries to infer the meaningful information and reduces uncertainty from the visual stimuli, and the entropy of primitive (EoP) can well describe this visual cognitive progress when perceiving natural images. 2) Ocular dominance (also known as binocularity) which represents the interaction between two eyes is quantified by the sparse representation coefficients. Inspired by previous research, the perception and understanding of an image is considered as an active inference process determined by the level of “surprise”, which can be described by EoP. Therefore, the primitives learnt from natural images can be utilized to evaluate the visual information by computing entropy. Meanwhile, considering the binocularity in stereo image quality assessment, a feasible way is proposed to characterize this binocular process according to the sparse representation coefficients of each view. Experimental results on LIVE 3D image databases and MCL database further demonstrate that the proposed algorithm achieves high consistency with subjective evaluation

    Blind assessment for stereo images considering binocular characteristics and deep perception map based on deep belief network

    Get PDF
    © 2018 Elsevier Inc. In recent years, blind image quality assessment in the field of 2D image/video has gained the popularity, but its applications in 3D image/video are to be generalized. In this paper, we propose an effective blind metric evaluating stereo images via deep belief network (DBN). This method is based on wavelet transform with both 2D features from monocular images respectively as image content description and 3D features from a novel depth perception map (DPM) as depth perception description. In particular, the DPM is introduced to quantify longitudinal depth information to align with human stereo visual perception. More specifically, the 2D features are local histogram of oriented gradient (HoG) features from high frequency wavelet coefficients and global statistical features including magnitude, variance and entropy. Meanwhile, the global statistical features from the DPM are characterized as 3D features. Subsequently, considering binocular characteristics, an effective binocular weight model based on multiscale energy estimation of the left and right images is adopted to obtain the content quality. In the training and testing stages, three DBN models for the three types features separately are used to get the final score. Experimental results demonstrate that the proposed stereo image quality evaluation model has high superiority over existing methods and achieve higher consistency with subjective quality assessments

    A blind stereoscopic image quality evaluator with segmented stacked autoencoders considering the whole visual perception route

    Get PDF
    Most of the current blind stereoscopic image quality assessment (SIQA) algorithms cannot show reliable accuracy. One reason is that they do not have the deep architectures and the other reason is that they are designed on the relatively weak biological basis, compared with findings on human visual system (HVS). In this paper, we propose a Deep Edge and COlor Signal INtegrity Evaluator (DECOSINE) based on the whole visual perception route from eyes to the frontal lobe, and especially focus on edge and color signal processing in retinal ganglion cells (RGC) and lateral geniculate nucleus (LGN). Furthermore, to model the complex and deep structure of the visual cortex, Segmented Stacked Auto-encoder (S-SAE) is used, which has not utilized for SIQA before. The utilization of the S-SAE complements weakness of deep learning-based SIQA metrics that require a very long training time. Experiments are conducted on popular SIQA databases, and the superiority of DECOSINE in terms of prediction accuracy and monotonicity is proved. The experimental results show that our model about the whole visual perception route and utilization of S-SAE are effective for SIQA
    corecore