5,347 research outputs found

    Conditional Local Convolution for Spatio-temporal Meteorological Forecasting

    Full text link
    Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.Comment: 14 page

    Effect of the contraction ratio upon viscoelastic fluid flow in three-dimensional square-square contractions

    Get PDF
    In this work we investigate the laminar flow through square–square sudden contractions with various contraction ratios (CR¼2.4, 4,8and12), using a Newtonian fluid and a shear-thinning viscoelastic fluid. Visualizations of the flow patterns were carried out using streakline photography and detailed velocity field measurements were performed using particle image velocimetry. The experimental results are compared with numerical predictions obtained using a finite-volume method. For the Newtonian fluid, a corner vortex is found upstream of the contraction and increasing flow inertia leads to a reduction of the vortex size. Good agreement is observed between experiments and numerical simulations. For the shear-thinning fluid flow a corner vortex is also observed upstream of the contraction independently of the contraction ratio. Increasing the elasticity of the flow, while still maintaining low inertia flow conditions, leads to a strong increase of the vortex size, until an elastic instability sets in and the flow becomes time-dependent at DeE200, 300, 70 and 450 for CR¼2.4, 4, 8 and 12, respectively. At low contraction ratios, viscoelasticity brings out an anomalous divergent flow upstream of the contraction. For both fluids studied the flow presents a complex three-dimensional helical vortex structure which is well predicted by numerical simulations. However, for the viscoelastic fluid flow the maximum Deborah number achieved in the numerical simulations is about one order of magnitude lower than the critical Deborah number for the onset of the elastic instability found in the experiments

    Context-Specific Preference Learning of One Dimensional Quantitative Geospatial Attributes Using a Neuro-Fuzzy Approach

    Get PDF
    Change detection is a topic of great importance for modern geospatial information systems. Digital aerial imagery provides an excellent medium to capture geospatial information. Rapidly evolving environments, and the availability of increasing amounts of diverse, multiresolutional imagery bring forward the need for frequent updates of these datasets. Analysis and query of spatial data using potentially outdated data may yield results that are sometimes invalid. Due to measurement errors (systematic, random) and incomplete knowledge of information (uncertainty) it is ambiguous if a change in a spatial dataset has really occurred. Therefore we need to develop reliable, fast, and automated procedures that will effectively report, based on information from a new image, if a change has actually occurred or this change is simply the result of uncertainty. This thesis introduces a novel methodology for change detection in spatial objects using aerial digital imagery. The uncertainty of the extraction is used as a quality estimate in order to determine whether change has occurred. For this goal, we develop a fuzzy-logic system to estimate uncertainty values fiom the results of automated object extraction using active contour models (a.k.a. snakes). The differential snakes change detection algorithm is an extension of traditional snakes that incorporates previous information (i.e., shape of object and uncertainty of extraction) as energy functionals. This process is followed by a procedure in which we examine the improvement of the uncertainty at the absence of change (versioning). Also, we introduce a post-extraction method for improving the object extraction accuracy. In addition to linear objects, in this thesis we extend differential snakes to track deformations of areal objects (e.g., lake flooding, oil spills). From the polygonal description of a spatial object we can track its trajectory and areal changes. Differential snakes can also be used as the basis for similarity indices for areal objects. These indices are based on areal moments that are invariant under general affine transformation. Experimental results of the differential snakes change detection algorithm demonstrate their performance. More specifically, we show that the differential snakes minimize the false positives in change detection and track reliably object deformations

    Geometric combinatorics and computational molecular biology: branching polytopes for RNA sequences

    Full text link
    Questions in computational molecular biology generate various discrete optimization problems, such as DNA sequence alignment and RNA secondary structure prediction. However, the optimal solutions are fundamentally dependent on the parameters used in the objective functions. The goal of a parametric analysis is to elucidate such dependencies, especially as they pertain to the accuracy and robustness of the optimal solutions. Techniques from geometric combinatorics, including polytopes and their normal fans, have been used previously to give parametric analyses of simple models for DNA sequence alignment and RNA branching configurations. Here, we present a new computational framework, and proof-of-principle results, which give the first complete parametric analysis of the branching portion of the nearest neighbor thermodynamic model for secondary structure prediction for real RNA sequences.Comment: 17 pages, 8 figure

    Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM

    Get PDF
    Sintering of Pt nanoparticles dispersed on a planar SiO(2) support was studied by in situ transmission electron microscopy (TEM). A time-lapsed TEM image series of the Pt nanoparticles, acquired during the exposure to 10 mbar synthetic air at 650 degrees C, reveal that the sintering was governed by the Ostwald ripening mechanism. The in situ TEM images also provide information about the temporal evolution of the Pt particle size distribution and of the growth or decay of the individual nanoparticles. The observed Pt nanoparticle changes compare well with predictions made by mean-field kinetic models for ripening, but deviations are revealed for the time-evolution for the individual nanoparticles. A better description of the individual nanoparticle ripening is obtained by kinetic models that include local correlations between neighboring nanoparticles in the atom-exchange process

    Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems

    Full text link
    A complete classification of the computational complexity of the fixed-point existence problem for boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NP-complete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.Comment: 17 pages; this version corrects an error/typo in the 2008/01/24 versio
    corecore