118,355 research outputs found

    A universal approach to coverage probability and throughput analysis for cellular networks

    No full text
    This paper proposes a novel tractable approach for accurately analyzing both the coverage probability and the achievable throughput of cellular networks. Specifically, we derive a new procedure referred to as the equivalent uniformdensity plane-entity (EUDPE)method for evaluating the other-cell interference. Furthermore, we demonstrate that our EUDPE method provides a universal and effective means to carry out the lower bound analysis of both the coverage probability and the average throughput for various base-station distribution models that can be found in practice, including the stochastic Poisson point process (PPP) model, a uniformly and randomly distributed model, and a deterministic grid-based model. The lower bounds of coverage probability and average throughput calculated by our proposed method agree with the simulated coverage probability and average throughput results and those obtained by the existing PPP-based analysis, if not better. Moreover, based on our new definition of cell edge boundary, we show that the cellular topology with randomly distributed base stations (BSs) only tends toward the Voronoi tessellation when the path-loss exponent is sufficiently high, which reveals the limitation of this popular network topology

    Transient Analysis of Photonic Networks

    Get PDF
    The behavior of slotted aloha protocol for a star-coupled Wavelength Division Multiple Access (WDMA) photonic network is studied. Semi-markov process is used for developing the steady state and transient models for the protocol. The performance of the network is evaluated in terms of various measures viz. average number of packets in the network, throughput of the network and average packet delay etc. The analytical models are validated by evaluating the numerical values of the performance indices, which are further compared by using Adaptive Neuro Fuzzy Inference System (ANFIS) approach. Keywords:Photonic networks, Slotted aloha, Semi-markov process, Neuro-fuzzy systems, Throughput.

    A Petri Net Tool for Software Performance Estimation Based on Upper Throughput Bounds

    Get PDF
    Functional and non-functional properties analysis (i.e., dependability, security, or performance) ensures that requirements are fulfilled during the design phase of software systems. However, the Unified Modelling Language (UML), standard de facto in industry for software systems modelling, is unsuitable for any kind of analysis but can be tailored for specific analysis purposes through profiling. For instance, the MARTE profile enables to annotate performance data within UML models that can be later transformed to formal models (e.g., Petri nets or Timed Automatas) for performance evaluation. A performance (or throughput) estimation in such models normally relies on a whole exploration of the state space, which becomes unfeasible for large systems. To overcome this issue upper throughput bounds are computed, which provide an approximation to the real system throughput with a good complexity-accuracy trade-off. This paper introduces a tool, named PeabraiN, that estimates the performance of software systems via their UML models. To do so, UML models are transformed to Petri nets where performance is estimated based on upper throughput bounds computation. PeabraiN also allows to compute other features on Petri nets, such as the computation of upper and lower marking place bounds, and to simulate using an approximate (continuous) method. We show the applicability of PeabraiN by evaluating the performance of a building closed circuit TV system

    On the effects of alternative optima in context-specific metabolic model predictions

    Full text link
    Recent methodological developments have facilitated the integration of high-throughput data into genome-scale models to obtain context-specific metabolic reconstructions. A unique solution to this data integration problem often may not be guaranteed, leading to a multitude of context-specific predictions equally concordant with the integrated data. Yet, little attention has been paid to the alternative optima resulting from the integration of context-specific data. Here we present computational approaches to analyze alternative optima for different context-specific data integration instances. By using these approaches on metabolic reconstructions for the leaf of Arabidopsis thaliana and the human liver, we show that the analysis of alternative optima is key to adequately evaluating the specificity of the predictions in particular cellular contexts. While we provide several ways to reduce the ambiguity in the context-specific predictions, our findings indicate that the existence of alternative optimal solutions warrant caution in detailed context-specific analyses of metabolism

    Physical Representation-based Predicate Optimization for a Visual Analytics Database

    Full text link
    Querying the content of images, video, and other non-textual data sources requires expensive content extraction methods. Modern extraction techniques are based on deep convolutional neural networks (CNNs) and can classify objects within images with astounding accuracy. Unfortunately, these methods are slow: processing a single image can take about 10 milliseconds on modern GPU-based hardware. As massive video libraries become ubiquitous, running a content-based query over millions of video frames is prohibitive. One promising approach to reduce the runtime cost of queries of visual content is to use a hierarchical model, such as a cascade, where simple cases are handled by an inexpensive classifier. Prior work has sought to design cascades that optimize the computational cost of inference by, for example, using smaller CNNs. However, we observe that there are critical factors besides the inference time that dramatically impact the overall query time. Notably, by treating the physical representation of the input image as part of our query optimization---that is, by including image transforms, such as resolution scaling or color-depth reduction, within the cascade---we can optimize data handling costs and enable drastically more efficient classifier cascades. In this paper, we propose Tahoma, which generates and evaluates many potential classifier cascades that jointly optimize the CNN architecture and input data representation. Our experiments on a subset of ImageNet show that Tahoma's input transformations speed up cascades by up to 35 times. We also find up to a 98x speedup over the ResNet50 classifier with no loss in accuracy, and a 280x speedup if some accuracy is sacrificed.Comment: Camera-ready version of the paper submitted to ICDE 2019, In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE 2019

    EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices

    Full text link
    In recent years, advances in deep learning have resulted in unprecedented leaps in diverse tasks spanning from speech and object recognition to context awareness and health monitoring. As a result, an increasing number of AI-enabled applications are being developed targeting ubiquitous and mobile devices. While deep neural networks (DNNs) are getting bigger and more complex, they also impose a heavy computational and energy burden on the host devices, which has led to the integration of various specialized processors in commodity devices. Given the broad range of competing DNN architectures and the heterogeneity of the target hardware, there is an emerging need to understand the compatibility between DNN-platform pairs and the expected performance benefits on each platform. This work attempts to demystify this landscape by systematically evaluating a collection of state-of-the-art DNNs on a wide variety of commodity devices. In this respect, we identify potential bottlenecks in each architecture and provide important guidelines that can assist the community in the co-design of more efficient DNNs and accelerators.Comment: Accepted at MobiSys 2019: 3rd International Workshop on Embedded and Mobile Deep Learning (EMDL), 201

    Usage of Network Simulators in Machine-Learning-Assisted 5G/6G Networks

    Full text link
    Without any doubt, Machine Learning (ML) will be an important driver of future communications due to its foreseen performance when applied to complex problems. However, the application of ML to networking systems raises concerns among network operators and other stakeholders, especially regarding trustworthiness and reliability. In this paper, we devise the role of network simulators for bridging the gap between ML and communications systems. In particular, we present an architectural integration of simulators in ML-aware networks for training, testing, and validating ML models before being applied to the operative network. Moreover, we provide insights on the main challenges resulting from this integration, and then give hints discussing how they can be overcome. Finally, we illustrate the integration of network simulators into ML-assisted communications through a proof-of-concept testbed implementation of a residential Wi-Fi network
    • …
    corecore