763 research outputs found

    Visualization of Vibrant Cities and Regions – Identification, Design and Development of 3D-GIS Applications and Modules

    Get PDF
    Facing a continuous state of transition and herewith connected financial, societal and ecological challenges such as the climate or demographic change (United Nations 2013), cities try to integrate innovative information and communication technologies in order to optimize administrative processes, legitimize decision making and to involve all relevant local actors into processes of public relevance. In this context 3D-GIS-models offer various not yet exploited potentials for all named levels of interest. This paper presents an overview over existing application fields for 3D-GIS-solutions, further proposing a categorization in order to be able to develop and implement target-oriented solutions. Moreover, this paper presents the project activities of the Fraunhofer IAO, the city of Cologne and the provider of geo-information-services ESRI, designing and developing end-user oriented applications for the 3D-GIS-tool CityEngine. Therefore various city departments such as the agencies for city planning, traffic and environment were involved in an iterative process in order to identify potential application fields and their benefits within the administrative work as well as their andvantages regarding existing solutions and processes. Aditionally, the particpants decided upon a set of focus applications to be developed within the project. Therefore, this document will concentrate on the potential benefits of the identified and cooperatively designed application fields, further outlining the first steps of the deleopment phase of the citizen particpiation application

    INTELLECTUAL INFORMATION TECHNOLOGIES IN THE ACTIVITIES OF THE EMERGENCY RESCUE SERVICE

    Get PDF
    The paper considers the features of the use of intelligent information technologies in the process of the emergency rescue service of the enterprise. To improve the efficiency of the rescue services, it is necessary to carry out strategic planning and management, which would be designed to prevent the occurrence of an emergency (emergency). Effective subsystems of emergency proactive planning should not only predict the occurrence of possible emergencies, but also provide for appropriate preventive measures, and emphasis should be placed on eliminating the underlying causes, not the emerging consequences. The change of modes in the event of an emergency can be effectively implemented through the deployment of a technologically secured situational center. Decisions in emergency situations are made in various operational situations, including crisis, and in extremely limited time. Nevertheless, they must be taken in a timely manner, be as reasonable as possible, and ensure the fullest and most effective use of available opportunities. Decision-making processes can be based on the personal experience of participants in the management process. As you carry out your professional activity, experience is formed, which subsequently allows you to perform some tasks much faster and more efficiently. To gain experience, it is proposed to use a knowledge management system based on ontology. In order to ensure maximum awareness of the management of the situation, it is proposed to use the expert system of the situation center. (ES SC) The ES of the situational center of the authorities can significantly improve the efficiency of management processes and provides information support for strategic and tactical management decision-making. The ES should implement tools for a comprehensive and operational assessment of the state of the management object and situational analysis of the identified problems

    Використання відкритих та спеціалізованих геоінформаційних систем для навчання комп’ютерного моделювання студентів та аспірантів

    Get PDF
    The article contains research on use of open and specialized geoinformation systems to prepare students and postgraduates on specialties: 101 “Environmental Sciences”, 103 “Earth Sciences”, 122 “Computer Sciences”, 183 “Environmental Technologies”. Analysis of the most common world open geoinformation systems is done. Experience of geoinformation systems use for students and postgraduates teaching for different specialties is described. Predominant orientation towards the use of geoinformation systems in educational process is determined based on the analysis of scientific publications and curricula of the most popular Ukrainian universities. According to the authors the material that is given narrows knowledge and skills of students and postgraduates, particularly in computer modeling. It is concluded that ability of students and postgraduates to use geoinformation systems is interdisciplinary. In particular, it develops knowledge and skills in computer modeling of various processes that may arise in the further professional activity. Examples of professional issues and ways to solve them using geoinformation systems are given. Recommendations are given on the use of open and specialized geoinformation systems in the educational process. It is recommended to use both proprietary (ArcGis, MapInfo) and open GIS (uDIG, QGIS, Whitebox GAT) to teach students. Open GIS (uDIG, QGIS, Whitebox GAT) and specialized (Modular GIS Environment, GEO + CAD, GeoniCS, AISEEM) can be used to teach both students and postgraduatesУ статті досліджено питання використання відкритих і спеціалізованих геоінформаційних систем у підготовці студентів і аспірантів за спеціальностями: 101 «Екологія», 103 «Науки про Землю», 122 «Комп’ютерні науки», 183 «Технології захисту навколишнього середовища». Зроблено аналіз найбільш поширених у світі відкритих геоінформаційних систем. Описано досвід застосування геоінформаційних систем для навчання студентів і аспірантів різних спеціальностей. На підставі аналізу наукових публікації та навчальних планів українських університетів, визначено переважну орієнтацію на використання в навчальному процесі пропрієтарних геоінформаційних систем, що, на думку авторів, звужує знання та навички студентів і аспірантів, зокрема щодо комп’ютерного моделювання. Зроблено висновок, що вміння студентів і аспірантів застосовувати геоінформаційні системи має міждисциплінарний характер, зокрема, розвиває знання і навички з комп’ютерного моделювання різних процесів, що можуть виникати у подальшій професійній діяльності. Наведено приклади професійних задач та способи їх вирішення із застосуванням геоінформаційних систем. Надано рекомендації щодо використання відкритих і спеціалізованих геоінформаційних систем у навчальному процесі. Рекомендовано для навчання студентів молодших курсів застосовувати як пропрієтарні (ArcGis, MapInfo) так і відкриті ГІС (uDIG, QGIS, Whitebox GAT). Для навчання студентів старших курсів і аспірантів можливо застосовувати відкриті ГІС (uDIG, QGIS, Whitebox GAT) та спеціалізовані (Modular GIS Environment, GEO+CAD, GeoniCS, AISEEM)

    Застосування відкритих та спеціалізованих геоінформаційних систем для вивчення комп’ютерного моделювання студентами та аспірантами

    Get PDF
    The article contains research on use of open and specialized geoinformation systems to prepare students and postgraduates on specialties: 101 “Environmental Sciences”, 103 “Earth Sciences”, 122 “Computer Sciences”, 183 “Environmental Technologies”. Analysis of the most common world open geoinformation systems is done. Experience of geoinformation systems use for students and postgraduates teaching for different specialties is described. Predominant orientation towards the use of geoinformation systems in educational process is determined based on the analysis of scientific publications and curricula of the most popular Ukrainian universities. According to the authors the material that is given narrows knowledge and skills of students and postgraduates, particularly in computer modeling. It is concluded that ability of students and postgraduates to use geoinformation systems is interdisciplinary. In particular, it develops knowledge and skills in computer modeling of various processes that may arise in the further professional activity. Examples of professional issues and ways to solve them using geoinformation systems are given. Recommendations are given on the use of open and specialized geoinformation systems in the educational process. It is recommended to use both proprietary (ArcGis, MapInfo) and open GIS (uDIG, QGIS, Whitebox GAT) to teach students. Open GIS (uDIG, QGIS, Whitebox GAT) and specialized (Modular GIS Environment, GEO + CAD, GeoniCS, AISEEM) can be used to teach both students and postgraduates.Стаття містить дослідження щодо використання відкритих та спеціалізованих геоінформаційних систем для підготовки студентів та аспірантів за спеціальностями: 101 “Навколишнє середовище”, 103 “Наука про Землю”, ​​122 “Комп’ютерні науки”, 183 “Екологічні технології”. Проведено аналіз найпоширеніших у світі відкритих геоінформаційних систем. Описано досвід використання геоінформаційних систем для студентів та аспірантів, які викладають різні спеціальності. Переважна орієнтація на використання геоінформаційних систем у навчальному процесі визначається на основі аналізу наукових публікацій та навчальних програм найпопулярніших українських університетів. На думку авторів, поданий матеріал звужує знання та вміння студентів та аспірантів, зокрема з комп’ютерного моделювання. Зроблено висновок, що здатність студентів та аспірантів користуватися геоінформаційними системами є міждисциплінарною. Зокрема, він розвиває знання та навички комп’ютерного моделювання різних процесів, які можуть виникнути в подальшій професійній діяльності. Наведено приклади професійних питань та шляхи їх вирішення за допомогою геоінформаційних систем. Дано рекомендації щодо використання відкритих та спеціалізованих геоінформаційних систем у навчальному процесі. Для навчання студентів рекомендується використовувати як фірмові (ArcGis, MapInfo), так і відкриті ГІС (uDIG, QGIS, Whitebox GAT). Відкриті ГІС (uDIG, QGIS, Whitebox GAT) та спеціалізовані (Модульне середовище ГІС, GEO + CAD, GeoniCS, AISEEM) можуть використовуватися для навчання як студентів, так і аспірантів

    Architecture and the Built Environment:

    Get PDF
    This publication provides an overview of TU Delft’s most significant research achievements in the field of architecture and the built environment during the years 2010–2012. It is the first presentation of the joint research portfolio of the Faculty of Architecture and OTB Research Institute since their integration into the Faculty of Architecture and the Built Environment. As such the portfolio holds a strong promise for the future. In a time when the economy seems to be finally picking up and in which such societal issues as energy, climate and ageing are more prominent than ever before, there are plenty of fields for us to explore in the next three years

    Prioritizing Offshore Vendor Selection Criteria for the North American Geospatial Industry

    Get PDF
    The U.S. market for geospatial services totaled US $2.2 billion in 2010, representing 50% of the global market. Data-processing firms subcontract labor-intensive portions of data services to offshore providers in South and East Asia and Eastern Europe. In general, half of all offshore contracts fail within the first 5 years because one or more parties consider the relationship unsuccessful. Despite the high failure rates, no study has examined the offshore vendor selection process in the geospatial industry. The purpose of this study was to determine the list of key offshore vendor selection criteria and the efficacy of the analytic hierarchy process (AHP) for ranking the criteria that North American geospatial companies consider in the offshore vendor selection process. After the selection of the initial list of factors from the literature and their validation in a pilot study, a final survey instrument was developed and administered to 15 subject matter experts (SMEs) in North America. The SMEs expressed their preferences for one criterion over another by pairwise comparisons, which served as input to the AHP procedure. The results showed that the quality of deliverables was the top ranked (out of 26) factors, instead of the price, which ranked third. Similarly, SMEs considered social and environmental consciousness on the vendor side as irrelevant. More importantly, the findings indicated that the structured AHP process provides a useful and effective methodology whose application may considerably improve the quality of the overall vendor selection process. Last, improved and stabilized business relationships leading to predictable budgets might catalyze social change, supporting stable employment. Consumers could benefit from derivative improvements in product quality and pricing

    Geo-management in organic agriculture

    Get PDF
    Information about authors of the monograph Editors: Skrypchuk P., Doctor of Economics, professor, National University of Water and Environmental Engineering, Rivne, Ukraine, head of NGO «Green Initiatives Rivne», Ukraine, chapter 1.3., 2.1., 2.2., 5.1.; Jozef Zaťko, Dr.h.c. mult. JUDr., Honor. Prof. mult., Prezident ICOCRIM SlovakBureau,Riaditeľ Východoeurópskej agentúry pre rozvoj n.o., Prezident Európsky inštitút ďalšieho vzdelávania, Slovakia, chapter 1.2.; 1. Baldzhy M., Doctor of Economics, professor, Odesa National Economic University, Odesa, Ukraine, chapter 2.2; 2. Breus D., Ph.D. in Agriculture, assistant, Kherson State Agrarian University, Kherson, Ukraine, chapter 2.3.; 3. Dudiak N., Ph.D. in Economics, associate professor, Kherson State Agrarian University, Kherson, Ukraine, chapter 2.3.; 4. Grabovska T., PhD in Agriculture, associate professor, Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine, chapter 3.1.; 5. Khomiuk N., PhD in Economics, Doctoral Student of the Department of International Economic Relations and Project Management,Lesya Ukrainka Eastern European National University, Lutsk, Ukraine, chapter 5.2.; 6. Lavrov V., Doctor of Agriculture, professor, Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine, chapter 3.1.; 7. Novytska I., post-graduate student, Poltava National Technical University named after Yurii Kondratiuk, Poltava, Ukraine, chapter 3.3.; 8. Panasiuk Damian, Cardinal Stefan Wyszyński University in Warsaw, Faculty of Biology and Environmental Sciences, Warsaw,Poland, chapter 5.1.; 9. Pichura V., Doctor of Agriculture, associate professor, Kherson State Agrarian University, Kherson, Ukraine, chapter 2.3.; 10. Potravka L., Doctor of Economics, associate professor, Kherson State Agrarian University, Kherson, Ukraine, chapter 2.3.; 11. Rybak V., PhD in Agriculture, associate professor, Khmelnystkyi national university, Khmelnystkyi, Ukraine, chapter 2.1.; 12. Shcherbakova A., PhD in Economics, associate professor, National University of Water and Environmental Engineering, Rivne, Ukraine, co-founder of NGO "Green Initiatives Rivne», Ukraine, chapter 1.1.; 13. Shevchuk N., PhD in Agriculture, associate professor, Khmelnystkyi national university, Khmelnystkyi, Ukraine, chapter 6.3.; 14. Shpak G., Ph.D. in Economics, senior lecturer, Technical College of National University of Water and Environmental Engineering, Rivne, Ukraine, chapter 6.1, 6.2.; 15. Skok S., Ph.D. in Agriculture, associate professor, Kherson State Agrarian University, Kherson, Ukraine, chapter 5.3.; 16. Skrypchuk V., student, Matea Bela University, Banská Bystrica, Slovakia, chapter 1.2.; 17. Stroganov O., graduate student, Kherson State Agrarian University, Kherson, Ukraine, chapter 2.3.; 18. Suduk O., PhD in Agriculture, associate professor, National University of Water and Environmental Engineering, Rivne, Ukraine, co-founder of NGO "Green Initiatives Rivne», Ukraine, chapter 4; 19. Ternowyi U. PhD in Agriculture, Skvyra Research Station of Organic Production of Institute of Agroecology and Nature Resources Use of National Academy of Agrarian Sciences of Ukraine, Skvyra, Ukraine, chapter 3.1.; 20. TiutiunnykH., Ph.D. in Economics, Junior Research Fellow, Institute of Market Problems and Economic&EcologicalResearch of the National Academy of Sciences of Ukraine, Odesa, Ukraine, chapter 3.2.; 21. Trembitska O., PhD in Agriculture, associate professor, Zhytomyr National Agroecological University, Zhytomyr, Ukraine, chapter 6.3. 22. Trokhliuk T., Ph.D. in Economics, senior lecturer, Berezno Forestry College of National University of Water and Environmental Engineering, Rivne, Ukraine, chapter 6.1.; 23. Zhukovskyi V., PhD in Technical sciences, senior lecturer, National University of Water and Environmental Engineering, Rivne, Ukraine, chapter 2.4

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Implementing GIS as a decision support tool for planning and managing development interventions

    Get PDF
    The aim of this study is to examine key implementation and managerial issues surrounding the use of a Geographic Information Systems (GIS) as a Decisions Support Tool (DST) for planning and managing development interventions. Ever since the emergence of GIS as a powerful analytical tool in almost all spheres of human endeavour, many organisations involved in development work have adopted its use. But the challenges of conceiving and implementing a GIS in ways that are more responsive to the problems that trigger its purchase remains a daunting task to many development organisations; even those with a wealth of experience in GIS. This is one of the motivating factors for this study. In this research, some relevant themes in GIS implementation and GIS management as a Spatial Decision Support System (SDSS) were examined in the literature review. A case study research strategy was used focusing on the experience of the Nelson Mandela Bay Municipality Enterprise GIS (EGIS). The study examined how the system is been ran and what other development organisations can learn from this experience. Data was collected and analysed using a mixed research methods approach. The findings show a good level of GIS acceptance among municipality staff. However, running the system is not hitch free. A couple of problems and challenges were identified on the field. It is recommended that the municipality like most development organisations seeking GIS solutions should put the user at the centre of every technical innovation in GIS as a DST
    corecore