407,835 research outputs found

    Essays on Urban Climate Model Evaluation and Application

    Get PDF
    The field of urban climatology as a subfield of atmospheric science / physical geography has developed significantly over the past 3 decades. Major advances have occurred in the theoretical understanding of the urban effect at multiple spatial and temporal scales, as well as in empirical work seeking to observe and ultimately predict urban scale phenomenon. It is this latter development, particularly in respect to urban heat and moisture, that forms the basis of this work. Less than 5 years ago, the concept of partitioning the urban area into distinct geographic units based on the potential thermal modification of the near surface climate was proposed within the field to bring greater rigor, clarity and transferability to observations made within urban areas. The Local Climate Zone (LCZ) approach has since been applied in multiple cities globally, which has demonstrated its efficacy in understanding the urban heat island (UHI) effect through observations and transferring those results across multiple cities. However as with global scale temperature anomalies, the UHI can be viewed as symptomatic of the underlying processes rather than purely as a response i.e. while we now are capable of observing enhanced air temperatures around cities, addressing the issue requires a deeper understanding of the processes that give rise to this phenomenon, particularly if solutions are to be transferred into urban planning practices and environmental policies. To that end, urban climate models are an invaluable tool for examining urban processes in more detail. However, their application in urban areas (particularly for planning problems) remains ad hoc and unsystematic. In fact, many cities in the economically developing world lack even basic data describing (i) the underlying city, its sealed surface extent, vegetation, building materials and so forth and/or (ii) knowledge of the overlying atmosphere in and around the city, required to apply such models. In this collection of papers, a formal modelling and evaluation approach is proposed, elaborated on and applied which utilises the LCZ system. While LCZs were designed strictly for observations of the air temperature at 2m, due to its generality and resulting uptake within the urban climate community, it is argued to be an effective approach for modelling, particularly in data poor settings. The LCZ approach is linked with the Surface Urban Energy and Water Balance Scheme (SUEWS) model, a mid-complex urban energy and water balance model. Hence, the approach is referred to as the LCZ-SUEWS approach. The application of the approach primarily focuses on Dublin city (Ireland). This was done as the city houses three (2 ongoing and 1 retired) eddy-covariance flux towers used to evaluate the approach, however the results are intended to be transferrable to other domains. Three primary conclusions can be drawn from this body of work. Firstly, the LCZ-SUEWS approach performs equally well in data poor, data rich settings, meaning the approach can be applied anywhere to provide an initial assessment of the urban energy balance. Secondly, the adoption of the approach yields the additional benefit of improving communication with the urban planning community in terms of illustrating the processes that give rise to the urban effect e.g. lack of photosynthecially active vegetation, standing water bodies, and high proportion of built up coverage. This allows for more geographically and physically targeted design interventions to reduce the negative impacts of urban development such as excess heat and lack of moisture. Thirdly, there is a need for an agreed framework on model evaluation which emphasises external independent evaluation and employs novel sources of observational data, for example, remote sensing. This would improve the trustworthiness of urban climate models and further encourage their uptake

    Symposium: Effects of Human Choices on Characteristics of Urban Ecosystems

    Get PDF
    Most urban ecology in cities remains an “ecology in cities” rather than an “ecology of cities.” Accomplishing the latter requires the inclusion of humans within the concept of “ecosystem,” both how humans alter the properties of urban ecosystems and how these alterations in turn influence human well-being. These influences are both direct (e.g., physiological and psychological influences on the human organism) and indirect, by influencing ecosystem sustainability. For the 2007 ESA meeting, Larry Baker, Loren Byrne, Jason Walker, and Alex Felson organized a symposium to address the relationships among human choices and urban ecosystems. In the introductory talk of this symposium, these authors discussed how the cumulative effect of individual household choices can have major effects on the properties of urban ecosystems. For example, direct resource consumption by households accounts for 40% of U.S. energy use; in the Twin Cities of Minnesota, households account for 75–80% of total N and P inputs. Households also have a major impact on vegetation biodiversity in cities. Drawing from the social science literature, this first talk introduced the variety of conceptual models that have been put forth to understand how humans make choices. Economists use classic supply–demand models to understand consumption of market goods (such as energy) and other tools to understand the value of nonmarket goods. Environmental psychologists have often used the Theory of Planned Behavior and related models to explain barriers to adopting specific environmental practices. Political scientists focusing on group processes stress the process by which choices are made and the distributive effects of decisions. Although ecologists often focus on how human behaviors are environmentally destructive, there are also many examples of how collective choices have had very positive environmental outcomes. These include large declines in soil erosion and smaller declines in fertilizer P use by farmers in the United States, widespread adoption of household recycling, greatly reduced household water consumption in some water conservation programs, and rapid increases in the sales of the Prius hybrid automobile in recent years. Programs leading to these positive environmental choices generally include a mix of several of the following: a persistent, meaningful message; dissemination of accurate, trusted knowledge; early adoption by trusted individuals; financial incentives or disincentives; targeting of high-consumption individuals; direct regulations; personal economic benefit and feedback. Three presenters examined factors regarding choices of managing the vegetation in urbanized landscapes. Morgan Grove from the Baltimore Ecosystem Study (BES-LTER) discussed an “ecology of prestige” in which consumption and expenditure on environmentally relevant goods and services are motivated by group identity and perceptions of social status associated with different lifestyles, and have used this theory to examine landscaping patterns. Grove and his colleagues combined high-resolution social and ecological spatial and temporal data such as property parcels and land cover (\u3e1 m) with composite measures of population, social stratification, and lifestyle for this presentation. Fig. 1 shows the relationship between percentage tree canopy cover (height of bars) with PRIZM lifestyle classifications. Of particular interest in a long-term context is the relationship between cause and effect: the possibility that some social groups are attracted to and conserve existing, desirable landscapes at a neighborhood scale, while others move to and rehabilitate their landscapes

    Organizational factors and depression management in community-based primary care settings

    Get PDF
    Abstract Background Evidence-based quality improvement models for depression have not been fully implemented in routine primary care settings. To date, few studies have examined the organizational factors associated with depression management in real-world primary care practice. To successfully implement quality improvement models for depression, there must be a better understanding of the relevant organizational structure and processes of the primary care setting. The objective of this study is to describe these organizational features of routine primary care practice, and the organization of depression care, using survey questions derived from an evidence-based framework. Methods We used this framework to implement a survey of 27 practices comprised of 49 unique offices within a large primary care practice network in western Pennsylvania. Survey questions addressed practice structure (e.g., human resources, leadership, information technology (IT) infrastructure, and external incentives) and process features (e.g., staff performance, degree of integrated depression care, and IT performance). Results The results of our survey demonstrated substantial variation across the practice network of organizational factors pertinent to implementation of evidence-based depression management. Notably, quality improvement capability and IT infrastructure were widespread, but specific application to depression care differed between practices, as did coordination and communication tasks surrounding depression treatment. Conclusions The primary care practices in the network that we surveyed are at differing stages in their organization and implementation of evidence-based depression management. Practical surveys such as this may serve to better direct implementation of these quality improvement strategies for depression by improving understanding of the organizational barriers and facilitators that exist within both practices and practice networks. In addition, survey information can inform efforts of individual primary care practices in customizing intervention strategies to improve depression management.http://deepblue.lib.umich.edu/bitstream/2027.42/78269/1/1748-5908-4-84.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/2/1748-5908-4-84-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/3/1748-5908-4-84.pdfPeer Reviewe

    Management of an Urban Stormwater System Using Projected Future Scenarios of Climate Models: A Watershed-Based Modeling Approach

    Full text link
    Anticipating a proper management needs for urban stormwater due to climate change is becoming a critical concern to water resources managers. In an effort to identify best management practices and understand the probable future climate scenarios, this study used high-resolution climate model data in conjunction with advanced statistical methods and computer simulation. Climate model data from the North American Regional Climate Change Assessment Program (NARCCAP) were used to calculate the design storm depths for the Gowan Watershed of Las Vegas Valley, Nevada. The Storm Water Management Model (SWMM), developed by the Environmental Protection Agency (EPA), was used for hydrological modeling. Two low-impact development techniques – Permeable Pavement and Green Roof – were implemented in the EPA SWMM hydrological modeling to attenuate excess surface runoff that was induced by climate change. The method adopted in this study was effective in mitigating the challenges in managing changes in urban stormwater amounts due to climate change

    From Large Urban to Small Rural Schools: An Empirical Study of National Board Certification and Teaching Effectiveness Final Report

    Get PDF
    The National Board for Professional Teaching Standards (NBPTS) is a professional organization that provides national certification to teachers who apply for and meet the Board's standards of performance for "accomplished" educators. This study responds to a request from the NBPTS to analyze National Board certification among high school teachers in understudied subject areas and locales to help fill gaps in the research literature. The research team selected two new locales for this analysis, the Commonwealth of Kentucky and the Chicago public schools. Chicago, a racially and ethnically diverse city with a population of more than 2.8 million, has one of the largest urban school districts in the country. Kentucky, by contrast, is a largely rural state with some suburban and urban areas, including the Louisville/Jefferson County metro area, population 750,000. Together, these two locales encompass a full range of public school settings

    High-Tech Urban Agriculture in Amsterdam : An Actor Network Analysis

    Get PDF
    The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social\u2013technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processe

    REMOTE SENSING OF FOLIAR NITROGEN IN CULTIVATED GRASSLANDS OF HUMAN DOMINATED LANDSCAPES

    Get PDF
    Foliar nitrogen (N) concentration of plant canopies plays a central role in a number of important ecosystem processes and continues to be an active subject in the field of remote sensing. Previous efforts to estimate foliar N at the landscape scale have primarily focused on intact forests and grasslands using aircraft imaging spectrometry and various techniques of statistical calibration and modeling. The present study was designed to extend this work by examining the potential to estimate the foliar N concentration of residential, agricultural and other cultivated grassland areas within a suburbanizing watershed. In conjunction with ground-based vegetation sampling, we developed Partial Least Squares (PLS) models for predicting mass-based foliar N across management types using input from airborne and field based imaging spectrometers. Results yielded strong predictive relationships for both ground- and aircraft-based sensors across sites that included turf grass, grazed pasture, hayfields and fallow fields. We also report on relationships between imaging spectrometer data and other important variables such as canopy height, biomass, and water content, results from which show strong promise for detection with high quality imaging spectrometry data and suggest that cultivated grassland offer opportunity for empirical study of canopy light dynamics. Finally, we discuss the potential for application of our results, and potential challenges, with data from the planned HyspIRI satellite, which will provide global coverage of data useful for vegetation N estimation

    A Framework for Integrating Transportation Into Smart Cities

    Get PDF
    In recent years, economic, environmental, and political forces have quickly given rise to “Smart Cities” -- an array of strategies that can transform transportation in cities. Using a multi-method approach to research and develop a framework for smart cities, this study provides a framework that can be employed to: Understand what a smart city is and how to replicate smart city successes; The role of pilot projects, metrics, and evaluations to test, implement, and replicate strategies; and Understand the role of shared micromobility, big data, and other key issues impacting communities. This research provides recommendations for policy and professional practice as it relates to integrating transportation into smart cities

    Advancing the REVOLUTION: Using Earth Systems Science to Prepare Elementary School Teachers in an Urban Environment

    Get PDF
    This article describes an Earth Systems approach that was developed to prepare preservice elementary school teachers in understanding science content and pedagogy with emphases in technology and mathematics. This approach, developed at the University of New Orleans, uses Lake Ponchartrain as the unifying theme for four courses in which students learn both scientific content and process. The authors note that many children decide if they like or dislike science by middle school and that improvements in science teaching in the middle grades are imperative, and that improving elementary science education is especially important in regions where significant portions of the student body are from groups traditionally under-represented in science. Surveying and field-testing results suggest that participants in these classes are likely to apply this approach to science teaching in their own classrooms. Educational levels: Graduate or professional
    • …
    corecore