417,068 research outputs found

    A need for an integrative security model for semantic stream reasoning systems

    Get PDF
    State-of-the-art security frameworks have been extensively addressing security issues for web resources, agents and services in the Semantic Web. The provision of Stream Reasoning as a new area spanning Semantic Web and Data Stream Management Systems has eventually opened up new challenges. Namely, their decentralized nature, the metadata descriptions, the number of users, agents, and services, make securing Stream Reasoning systems difficult to handle. Thus, there is an inherent need of developing new security models which will handle security and automate security mechanisms to a more autonomous system that supports complex and dynamic relationships between data, clients and service providers. We plan to validate our approach on a typical application of stream data, on Wireless Sensor Networks (WSNs). In particular, WSNs for water quality monitoring will serve as a case study. The paper describes the initial findings and research plan for building a consistent security model for stream reasoning systems

    A need for an integrative security model for semantic stream reasoning systems

    Get PDF
    State-of-the-art security frameworks have been extensively addressing security issues for web resources, agents and services in the Semantic Web. The provision of Stream Reasoning as a new area spanning Semantic Web and Data Stream Management Systems has eventually opened up new challenges. Namely, their decentralized nature, the metadata descriptions, the number of users, agents, and services, make securing Stream Reasoning systems difficult to handle. Thus, there is an inherent need of developing new security models which will handle security and automate security mechanisms to a more autonomous system that supports complex and dynamic relationships between data, clients and service providers. We plan to validate our approach on a typical application of stream data, on Wireless Sensor Networks (WSNs). In particular, WSNs for water quality monitoring will serve as a case study. The paper describes the initial findings and research plan for building a consistent security model for stream reasoning systems

    Hierarchical N-Body problem on graphics processor unit

    Get PDF
    Galactic simulation is an important cosmological computation, and represents a classical N-body problem suitable for implementation on vector processors. Barnes-Hut algorithm is a hierarchical N-Body method used to simulate such galactic evolution systems. Stream processing architectures expose data locality and concurrency available in multimedia applications. On the other hand, there are numerous compute-intensive scientific or engineering applications that can potentially benefit from such computational and communication models. These applications are traditionally implemented on vector processors. Stream architecture based graphics processor units (GPUs) present a novel computational alternative for efficiently implementing such high-performance applications. Rendering on a stream architecture sustains high performance, while user-programmable modules allow implementing complex algorithms efficiently. GPUs have evolved over the years, from being fixed-function pipelines to user programmable processors. In this thesis, we focus on the implementation of Barnes-Hut algorithm on typical current-generation programmable GPUs. We exploit computation and communication requirements present in Barnes-Hut algorithm to expose their suitability for user-programmable GPUs. Our implementation of the Barnes-Hut algorithm is formulated as a fragment shader targeting the selected GPU. We discuss implementation details, design issues, results, and challenges encountered in programming the fragment shader

    Avian GIS models signal human risk for West Nile virus in Mississippi

    Get PDF
    BACKGROUND: West Nile virus (WNV) poses a significant health risk for residents of Mississippi. Physicians and state health officials are interested in new and efficient methods for monitoring disease spread and predicting future outbreaks. Geographic Information Systems (GIS) models have the potential to support these efforts. Environmental conditions favorable for mosquito habitat were modeled using GIS to derive WNV risk maps for Mississippi. Variables important to WNV dissemination were selected and classified as static and dynamic. The static variables included road density, stream density, slope, and vegetation. The dynamic variable represented seasonal water budget and was calculated using precipitation and evaporation estimates. Significance tests provided deterministic evidence of variable importance to the models. RESULTS: Several models were developed to estimate WNV risk including a landscape-base model and seasonal climatic sub-models. P-values from t-tests guided variable importance ranking. Variables were ranked and weights assigned as follows: road density (0.4), stream density (0.3), slope (0.2) and vegetation (0.1). This landscape-base model was modified by climatic conditions to assess the importance of climate to WNV risk. Human case data at the zip code level were used to validate modeling results. All models were summarized by zip codes for interpretation and model validation. For all models, estimated risk was higher for zip codes with at least one human case than for zip codes where no human cases were recorded. Overall median measure of risk by zip code indicated that 67% of human cases occurred in the high-risk category. CONCLUSION: Modeling results indicated that dead bird occurrences are correlated with human WNV risk and can facilitate the assessment of environmental variables that contribute to that risk. Each variable's importance in GIS-based risk predictions was assigned deterministically. Our models indicated non-uniform distribution of risk across the state and showed elevated risk in urban and as well as rural areas. Model limitations include resolution of human data, zip code aggregation issues, and quality/availability of vegetation and stream density layers. Our approach verified that WNV risk can be modeled at the state level and can be modified for risk predictions of other vector-borne diseases in varied ecological regions
    • …
    corecore