740 research outputs found

    State-of-the-art generalisation research in NLP: a taxonomy and review

    Get PDF
    The ability to generalise well is one of the primary desiderata of natural language processing (NLP). Yet, what `good generalisation' entails and how it should be evaluated is not well understood, nor are there any common standards to evaluate it. In this paper, we aim to lay the ground-work to improve both of these issues. We present a taxonomy for characterising and understanding generalisation research in NLP, we use that taxonomy to present a comprehensive map of published generalisation studies, and we make recommendations for which areas might deserve attention in the future. Our taxonomy is based on an extensive literature review of generalisation research, and contains five axes along which studies can differ: their main motivation, the type of generalisation they aim to solve, the type of data shift they consider, the source by which this data shift is obtained, and the locus of the shift within the modelling pipeline. We use our taxonomy to classify over 400 previous papers that test generalisation, for a total of more than 600 individual experiments. Considering the results of this review, we present an in-depth analysis of the current state of generalisation research in NLP, and make recommendations for the future. Along with this paper, we release a webpage where the results of our review can be dynamically explored, and which we intend to up-date as new NLP generalisation studies are published. With this work, we aim to make steps towards making state-of-the-art generalisation testing the new status quo in NLP.Comment: 35 pages of content + 53 pages of reference

    Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection

    Get PDF
    Machine Learning (ML) has been increasingly used to aid humans making high-stakes decisions in a wide range of areas, from public policy to criminal justice, education, healthcare, or financial services. However, it is very hard for humans to grasp the rationale behind every ML model’s prediction, hindering trust in the system. The field of Explainable Artificial Intelligence (XAI) emerged to tackle this problem, aiming to research and develop methods to make those “black-boxes” more interpretable, but there is still no major breakthrough. Additionally, the most popular explanation methods — LIME and SHAP — produce very low-level feature attribution explanations, being of limited usefulness to personas without any ML knowledge. This work was developed at Feedzai, a fintech company that uses ML to prevent financial crime. One of the main Feedzai products is a case management application used by fraud analysts to review suspicious financial transactions flagged by the ML models. Fraud analysts are domain experts trained to look for suspicious evidence in transactions but they do not have ML knowledge, and consequently, current XAI methods do not suit their information needs. To address this, we present JOEL, a neural network-based framework to jointly learn a decision-making task and associated domain knowledge explanations. JOEL is tailored to human-in-the-loop domain experts that lack deep technical ML knowledge, providing high-level insights about the model’s predictions that very much resemble the experts’ own reasoning. Moreover, by collecting the domain feedback from a pool of certified experts (human teaching), we promote seamless and better quality explanations. Lastly, we resort to semantic mappings between legacy expert systems and domain taxonomies to automatically annotate a bootstrap training set, overcoming the absence of concept-based human annotations. We validate JOEL empirically on a real-world fraud detection dataset, at Feedzai. We show that JOEL can generalize the explanations from the bootstrap dataset. Furthermore, obtained results indicate that human teaching is able to further improve the explanations prediction quality.A Aprendizagem de Máquina (AM) tem sido cada vez mais utilizada para ajudar os humanos a tomar decisões de alto risco numa vasta gama de áreas, desde política até à justiça criminal, educação, saúde e serviços financeiros. Porém, é muito difícil para os humanos perceber a razão da decisão do modelo de AM, prejudicando assim a confiança no sistema. O campo da Inteligência Artificial Explicável (IAE) surgiu para enfrentar este problema, visando desenvolver métodos para tornar as “caixas-pretas” mais interpretáveis, embora ainda sem grande avanço. Além disso, os métodos de explicação mais populares — LIME and SHAP — produzem explicações de muito baixo nível, sendo de utilidade limitada para pessoas sem conhecimento de AM. Este trabalho foi desenvolvido na Feedzai, a fintech que usa a AM para prevenir crimes financeiros. Um dos produtos da Feedzai é uma aplicação de gestão de casos, usada por analistas de fraude. Estes são especialistas no domínio treinados para procurar evidências suspeitas em transações financeiras, contudo não tendo o conhecimento em AM, os métodos de IAE atuais não satisfazem as suas necessidades de informação. Para resolver isso, apresentamos JOEL, a framework baseada em rede neuronal para aprender conjuntamente a tarefa de tomada de decisão e as explicações associadas. A JOEL é orientada a especialistas de domínio que não têm conhecimento técnico profundo de AM, fornecendo informações de alto nível sobre as previsões do modelo, que muito se assemelham ao raciocínio dos próprios especialistas. Ademais, ao recolher o feedback de especialistas certificados (ensino humano), promovemos explicações contínuas e de melhor qualidade. Por último, recorremos a mapeamentos semânticos entre sistemas legados e taxonomias de domínio para anotar automaticamente um conjunto de dados, superando a ausência de anotações humanas baseadas em conceitos. Validamos a JOEL empiricamente em um conjunto de dados de detecção de fraude do mundo real, na Feedzai. Mostramos que a JOEL pode generalizar as explicações aprendidas no conjunto de dados inicial e que o ensino humano é capaz de melhorar a qualidade da previsão das explicações

    Deep Learning-based Solutions to Improve Diagnosis in Wireless Capsule Endoscopy

    Full text link
    [eng] Deep Learning (DL) models have gained extensive attention due to their remarkable performance in a wide range of real-world applications, particularly in computer vision. This achievement, combined with the increase in available medical records, has made it possible to open up new opportunities for analyzing and interpreting healthcare data. This symbiotic relationship can enhance the diagnostic process by identifying abnormalities, patterns, and trends, resulting in more precise, personalized, and effective healthcare for patients. Wireless Capsule Endoscopy (WCE) is a non-invasive medical imaging technique used to visualize the entire Gastrointestinal (GI) tract. Up to this moment, physicians meticulously review the captured frames to identify pathologies and diagnose patients. This manual process is time- consuming and prone to errors due to the challenges of interpreting the complex nature of WCE procedures. Thus, it demands a high level of attention, expertise, and experience. To overcome these drawbacks, shorten the screening process, and improve the diagnosis, efficient and accurate DL methods are required. This thesis proposes DL solutions to the following problems encountered in the analysis of WCE studies: pathology detection, anatomical landmark identification, and Out-of-Distribution (OOD) sample handling. These solutions aim to achieve robust systems that minimize the duration of the video analysis and reduce the number of undetected lesions. Throughout their development, several DL drawbacks have appeared, including small and imbalanced datasets. These limitations have also been addressed, ensuring that they do not hinder the generalization of neural networks, leading to suboptimal performance and overfitting. To address the previous WCE problems and overcome the DL challenges, the proposed systems adopt various strategies that utilize the power advantage of Triplet Loss (TL) and Self-Supervised Learning (SSL) techniques. Mainly, TL has been used to improve the generalization of the models, while SSL methods have been employed to leverage the unlabeled data to obtain useful representations. The presented methods achieve State-of-the-art results in the aforementioned medical problems and contribute to the ongoing research to improve the diagnostic of WCE studies.[cat] Els models d’aprenentatge profund (AP) han acaparat molta atenció a causa del seu rendiment en una àmplia gamma d'aplicacions del món real, especialment en visió per ordinador. Aquest fet, combinat amb l'increment de registres mèdics disponibles, ha permès obrir noves oportunitats per analitzar i interpretar les dades sanitàries. Aquesta relació simbiòtica pot millorar el procés de diagnòstic identificant anomalies, patrons i tendències, amb la conseqüent obtenció de diagnòstics sanitaris més precisos, personalitzats i eficients per als pacients. La Capsula endoscòpica (WCE) és una tècnica d'imatge mèdica no invasiva utilitzada per visualitzar tot el tracte gastrointestinal (GI). Fins ara, els metges revisen minuciosament els fotogrames capturats per identificar patologies i diagnosticar pacients. Aquest procés manual requereix temps i és propens a errors. Per tant, exigeix un alt nivell d'atenció, experiència i especialització. Per superar aquests inconvenients, reduir la durada del procés de detecció i millorar el diagnòstic, es requereixen mètodes eficients i precisos d’AP. Aquesta tesi proposa solucions que utilitzen AP per als següents problemes trobats en l'anàlisi dels estudis de WCE: detecció de patologies, identificació de punts de referència anatòmics i gestió de mostres que pertanyen fora del domini. Aquestes solucions tenen com a objectiu aconseguir sistemes robustos que minimitzin la durada de l'anàlisi del vídeo i redueixin el nombre de lesions no detectades. Durant el seu desenvolupament, han sorgit diversos inconvenients relacionats amb l’AP, com ara conjunts de dades petits i desequilibrats. Aquestes limitacions també s'han abordat per assegurar que no obstaculitzin la generalització de les xarxes neuronals, evitant un rendiment subòptim. Per abordar els problemes anteriors de WCE i superar els reptes d’AP, els sistemes proposats adopten diverses estratègies que aprofiten l'avantatge de la Triplet Loss (TL) i les tècniques d’auto-aprenentatge. Principalment, s'ha utilitzat TL per millorar la generalització dels models, mentre que els mètodes d’autoaprenentatge s'han emprat per aprofitar les dades sense etiquetar i obtenir representacions útils. Els mètodes presentats aconsegueixen bons resultats en els problemes mèdics esmentats i contribueixen a la investigació en curs per millorar el diagnòstic dels estudis de WCE

    Responsible Model Deployment via Model-agnostic Uncertainty Learning

    Get PDF

    Deep learning for healthcare applications based on physiological signals: A review

    Get PDF
    Background and objective: We have cast the net into the ocean of knowledge to retrieve the latest scientific research on deep learning methods for physiological signals. We found 53 research papers on this topic, published from 01.01.2008 to 31.12.2017. Methods: An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram(EMG), Electroencephalogram(EEG), Electrocardiogram(ECG), and Electrooculogram(EOG). These four categories were used to structure the subsequent content review. Results: During the content review, we understood that deep learning performs better for big and varied datasets than classic analysis and machine classification methods. Deep learning algorithms try to develop the model by using all the available input. Conclusions: This review paper depicts the application of various deep learning algorithms used till recently, but in future it will be used for more healthcare areas to improve the quality of diagnosi

    Artificial Intelligence for the Detection of Electricity Theft and Irregular Power Usage in Emerging Markets

    Get PDF
    Power grids are critical infrastructure assets that face non-technical losses (NTL), which include, but are not limited to, electricity theft, broken or malfunctioning meters and arranged false meter readings. In emerging markets, NTL are a prime concern and often range up to 40% of the total electricity distributed. The annual world-wide costs for utilities due to NTL are estimated to be around USD 100 billion. Reducing NTL in order to increase revenue, profit and reliability of the grid is therefore of vital interest to utilities and authorities. In the beginning of this thesis, we provide an in-depth discussion of the causes of NTL and the economic effects thereof. Industrial NTL detection systems are still largely based on expert knowledge when deciding whether to carry out costly on-site inspections of customers. Electric utilities are reluctant to move to large-scale deployments of automated systems that learn NTL profiles from data. This is due to the latter's propensity to suggest a large number of unnecessary inspections. In this thesis, we compare expert knowledge-based decision making systems to automated statistical decision making. We then branch out our research into different directions: First, in order to allow human experts to feed their knowledge in the decision process, we propose a method for visualizing prediction results at various granularity levels in a spatial hologram. Our approach allows domain experts to put the classification results into the context of the data and to incorporate their knowledge for making the final decisions of which customers to inspect. Second, we propose a machine learning framework that classifies customers into NTL or non-NTL using a variety of features derived from the customers' consumption data as well as a selection of master data. The methodology used is specifically tailored to the level of noise in the data. Last, we discuss the issue of biases in data sets. A bias occurs whenever training sets are not representative of the test data, which results in unreliable models. We show how quantifying and reducing these biases leads to an increased accuracy of the trained NTL detectors. This thesis has resulted in appreciable results on real-world big data sets of millions customers. Our systems are being deployed in a commercial NTL detection software. We also provide suggestions on how to further reduce NTL by not only carrying out inspections, but by implementing market reforms, increasing efficiency in the organization of utilities and improving communication between utilities, authorities and customers
    • …
    corecore