4,408 research outputs found

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    Investigating the potential for detecting Oak Decline using Unmanned Aerial Vehicle (UAV) Remote Sensing

    Get PDF
    This PhD project develops methods for the assessment of forest condition utilising modern remote sensing technologies, in particular optical imagery from unmanned aerial systems and with Structure from Motion photogrammetry. The research focuses on health threats to the UK’s native oak trees, specifically, Chronic Oak Decline (COD) and Acute Oak Decline (AOD). The data requirements and methods to identify these complex diseases are investigatedusing RGB and multispectral imagery with very high spatial resolution, as well as crown textural information. These image data are produced photogrammetrically from multitemporal unmanned aerial vehicle (UAV) flights, collected during different seasons to assess the influence of phenology on the ability to detect oak decline. Particular attention is given to the identification of declined oak health within the context of semi-natural forests and heterogenous stands. Semi-natural forest environments pose challenges regarding naturally occurring variability. The studies investigate the potential and practical implications of UAV remote sensing approaches for detection of oak decline under these conditions. COD is studied at Speculation Cannop, a section in the Forest of Dean, dominated by 200-year-old oaks, where decline symptoms have been present for the last decade. Monks Wood, a semi-natural woodland in Cambridgeshire, is the study site for AOD, where trees exhibit active decline symptoms. Field surveys at these sites are designed and carried out to produce highly-accurate differential GNSS positional information of symptomatic and control oak trees. This allows the UAV data to be related to COD or AOD symptoms and the validation of model predictions. Random Forest modelling is used to determine the explanatory value of remote sensing-derived metrics to distinguish trees affected by COD or AOD from control trees. Spectral and textural variables are extracted from the remote sensing data using an object-based approach, adopting circular plots around crown centres at individual tree level. Furthermore, acquired UAV imagery is applied to generate a species distribution map, improving on the number of detectable species and spatial resolution from a previous classification using multispectral data from a piloted aircraft. In the production of the map, parameters relevant for classification accuracy, and identification of oak in particular, are assessed. The effect of plot size, sample size and data combinations are studied. With optimised parameters for species classification, the updated species map is subsequently employed to perform a wall-to-wall prediction of individual oak tree condition, evaluating the potential of a full inventory detection of declined health. UAV-acquired data showed potential for discrimination of control trees and declined trees, in the case of COD and AOD. The greatest potential for detecting declined oak condition was demonstrated with narrowband multispectral imagery. Broadband RGB imagery was determined to be unsuitable for a robust distinction between declined and control trees. The greatest explanatory power was found in remotely-sensed spectra related to photosynthetic activity, indicated by the high feature importance of nearinfrared spectra and the vegetation indices NDRE and NDVI. High feature importance was also produced by texture metrics, that describe structural variations within the crown. The findings indicate that the remotely sensed explanatory variables hold significant information regarding changes in leaf chemistry and crown morphology that relate to chlorosis, defoliation and dieback occurring in the course of the decline. In the case of COD, a distinction of symptomatic from control trees was achieved with 75 % accuracy. Models developed for AOD detection yielded AUC scores up to 0.98,when validated on independent sample data. Classification of oak presence was achieved with a User’s accuracy of 97 % and the produced species map generated 95 % overall accuracy across the eight species within the study area in the north-east of Monks Wood. Despite these encouraging results, it was shown that the generalisation of models is unfeasible at this stage and many challenges remain. A wall-to-wall prediction of decline status confirmed the inability to generalise, yielding unrealistic results, with a high number of declined trees predicted. Identified weaknesses of the developed models indicate complexity related to the natural variability of heterogenous forests combined with the diverse symptoms of oak decline. Specific to the presented studies, additional limitations were attributed to limited ground truth, consequent overfitting,the binary classification of oak health status and uncertainty in UAV-acquired reflectance values. Suggestions for future work are given and involve the extension of field sampling with a non-binary dependent variable to reflect the severity of oak decline induced stress. Further technical research on the quality and reliability of UAV remote sensing data is also required

    A Quantitative Assessment of Forest Cover Change in the Moulouya River Watershed (Morocco) by the Integration of a Subpixel-Based and Object-Based Analysis of Landsat Data

    Get PDF
    A quantitative assessment of forest cover change in the Moulouya River watershed (Morocco) was carried out by means of an innovative approach from atmospherically corrected reflectance Landsat images corresponding to 1984 (Landsat 5 Thematic Mapper) and 2013 (Landsat 8 Operational Land Imager). An object-based image analysis (OBIA) was undertaken to classify segmented objects as forested or non-forested within the 2013 Landsat orthomosaic. A Random Forest classifier was applied to a set of training data based on a features vector composed of different types of object features such as vegetation indices, mean spectral values and pixel-based fractional cover derived from probabilistic spectral mixture analysis). The very high spatial resolution image data of Google Earth 2013 were employed to train/validate the Random Forest classifier, ranking the NDVI vegetation index and the corresponding pixel-based percentages of photosynthetic vegetation and bare soil as the most statistically significant object features to extract forested and non-forested areas. Regarding classification accuracy, an overall accuracy of 92.34% was achieved. The previously developed classification scheme was applied to the 1984 Landsat data to extract the forest cover change between 1984 and 2013, showing a slight net increase of 5.3% (ca. 8800 ha) in forested areas for the whole region

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery

    Full text link
    [EN] Mapping forest structure variables provides important information for the estimation of forest biomass, carbon stocks, pasture suitability or for wildfire risk prevention and control. The optimization of the prediction models of these variables requires an adequate stratification of the forest landscape in order to create specific models for each structural type or strata. This paper aims to propose and validate the use of an object-oriented classification methodology based on low-density LiDAR data (0.5 m−2) available at national level, WorldView-2 and Sentinel-2 multispectral imagery to categorize Mediterranean forests in generic structural types. After preprocessing the data sets, the area was segmented using a multiresolution algorithm, features describing 3D vertical structure were extracted from LiDAR data and spectral and texture features from satellite images. Objects were classified after feature selection in the following structural classes: grasslands, shrubs, forest (without shrubs), mixed forest (trees and shrubs) and dense young forest. Four classification algorithms (C4.5 decision trees, random forest, k-nearest neighbour and support vector machine) were evaluated using cross-validation techniques. The results show that the integration of low-density LiDAR and multispectral imagery provide a set of complementary features that improve the results (90.75% overall accuracy), and the object-oriented classification techniques are efficient for stratification of Mediterranean forest areas in structural- and fuel-related categories. Further work will be focused on the creation and validation of a different prediction model adapted to the various strata.This work was supported by the Spanish Ministerio de Economia y Competitividad and FEDER under [grant number CGL2013-46387-C2-1-R]; Fondo de Garantia Juvenil under [contract number PEJ-2014-A-45358].Ruiz Fernández, LÁ.; Recio Recio, JA.; Crespo-Peremarch, P.; Sapena, M. (2018). An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International. 33(5):443-457. https://doi.org/10.1080/10106049.2016.1265595S44345733
    corecore