4,457 research outputs found

    Nonminimal state space approach to multivariable ramp metering control of motorway bottlenecks

    Get PDF
    The paper discusses the automatic control of motorway traffic flows utilising ramp metering, i.e. traffic lights on the on-ramp entrances. A multivariable ramp metering system is developed, based on the nonminimal state space (NMSS) approach to control system design using adaptive proportional-integral-plus, linear quadratic (PIP–LQ) optimal controllers. The controller is evaluated on a nonlinear statistical traffic model (STM) simulation of the Amsterdam motorway ring road near the Coen Tunnel

    Resilience Assignment Framework using System Dynamics and Fuzzy Logic.

    Get PDF
    This paper is concerned with the development of a conceptual framework that measures the resilience of the transport network under climate change related events. However, the conceptual framework could be adapted and quantified to suit each disruption’s unique impacts. The proposed resilience framework evaluates the changes in transport network performance in multi-stage processes; pre, during and after the disruption. The framework will be of use to decision makers in understanding the dynamic nature of resilience under various events. Furthermore, it could be used as an evaluation tool to gauge transport network performance and highlight weaknesses in the network. In this paper, the system dynamics approach and fuzzy logic theory are integrated and employed to study three characteristics of network resilience. The proposed methodology has been selected to overcome two dominant problems in transport modelling, namely complexity and uncertainty. The system dynamics approach is intended to overcome the double counting effect of extreme events on various resilience characteristics because of its ability to model the feedback process and time delay. On the other hand, fuzzy logic is used to model the relationships among different variables that are difficult to express in numerical form such as redundancy and mobility

    Slime mould imitation of Belgian transport networks: redundancy, bio-essential motorways, and dissolution

    Full text link
    Belgium is amongst few artificial countries, established on purpose, when Dutch and French speaking parts were joined in a single unit. This makes Belgium a particularly interesting testbed for studying bio-inspired techniques for simulation and analysis of vehicular transport networks. We imitate growth and formation of a transport network between major urban areas in Belgium using the acellular slime mould Physarum polycephalum. We represent the urban areas with the sources of nutrients. The slime mould spans the sources of nutrients with a network of protoplasmic tubes. The protoplasmic tubes represent the motorways. In an experimental laboratory analysis we compare the motorway network approximated by P. polycephalum and the man-made motorway network of Belgium. We evaluate the efficiency of the slime mould network and the motorway network using proximity graphs

    Situations in traffic - how quickly they change

    Full text link
    Spatio-temporal correlations of intensity of traffic are analysed for one week data collected in the motorway M-30 around Madrid in January 2009. We found that the lifetime of these correlations is the shortest in the evening, between 6 and 8 p.m. This lifetime is a new indicator how much attention of drivers is demanded in given traffic conditions.Comment: 9 pages, 6 figure

    An Agent-based Modelling Framework for Driving Policy Learning in Connected and Autonomous Vehicles

    Get PDF
    Due to the complexity of the natural world, a programmer cannot foresee all possible situations, a connected and autonomous vehicle (CAV) will face during its operation, and hence, CAVs will need to learn to make decisions autonomously. Due to the sensing of its surroundings and information exchanged with other vehicles and road infrastructure, a CAV will have access to large amounts of useful data. While different control algorithms have been proposed for CAVs, the benefits brought about by connectedness of autonomous vehicles to other vehicles and to the infrastructure, and its implications on policy learning has not been investigated in literature. This paper investigates a data driven driving policy learning framework through an agent-based modelling approaches. The contributions of the paper are two-fold. A dynamic programming framework is proposed for in-vehicle policy learning with and without connectivity to neighboring vehicles. The simulation results indicate that while a CAV can learn to make autonomous decisions, vehicle-to-vehicle (V2V) communication of information improves this capability. Furthermore, to overcome the limitations of sensing in a CAV, the paper proposes a novel concept for infrastructure-led policy learning and communication with autonomous vehicles. In infrastructure-led policy learning, road-side infrastructure senses and captures successful vehicle maneuvers and learns an optimal policy from those temporal sequences, and when a vehicle approaches the road-side unit, the policy is communicated to the CAV. Deep-imitation learning methodology is proposed to develop such an infrastructure-led policy learning framework

    A method to assess demand growth vulnerability of travel times on road network links

    No full text
    Many national governments around the world have turned their recent focus to monitoring the actual reliability of their road networks. In parallel there have been major research efforts aimed at developing modelling approaches for predicting the potential vulnerability of such networks, and in forecasting the future impact of any mitigating actions. In practice-whether monitoring the past or planning for the future-a confounding factor may arise, namely the potential for systematic growth in demand over a period of years. As this growth occurs the networks will operate in a regime closer to capacity, in which they are more sensitive to any variation in flow or capacity. Such growth will be partially an explanation for trends observed in historic data, and it will have an impact in forecasting too, where we can interpret this as implying that the networks are vulnerable to demand growth. This fact is not reflected in current vulnerability methods which focus almost exclusively on vulnerability to loss in capacity. In the paper, a simple, moment-based method is developed to separate out this effect of demand growth on the distribution of travel times on a network link, the aim being to develop a simple, tractable, analytic method for medium-term planning applications. Thus the impact of demand growth on the mean, variance and skewness in travel times may be isolated. For given critical changes in these summary measures, we are thus able to identify what (location-specific) level of demand growth would cause these critical values to be exceeded, and this level is referred to as Demand Growth Reliability Vulnerability (DGRV). Computing the DGRV index for each link of a network also allows the planner to identify the most vulnerable locations, in terms of their ability to accommodate growth in demand. Numerical examples are used to illustrate the principles and computation of the DGRV measure

    Effects of low speed limits on freeway traffic flow

    Get PDF
    Recent years have seen a renewed interest in Variable Speed Limit (VSL) strategies. New opportunities for VSL as a freeway metering mechanism or a homogenization scheme to reduce speed differences and lane changing maneuvers are being explored. This paper examines both the macroscopic and microscopic effects of different speed limits on a traffic stream, especially when adopting low speed limits. To that end, data from a VSL experiment carried out on a freeway in Spain are used. Data include vehicle counts, speeds and occupancy per lane, as well as lane changing rates for three days, each with a different fixed speed limit (80 km/h, 60 km/h, and 40km/h). Results reveal some of the mechanisms through which VSL affects traffic performance, specifically the flow and speed distribution across lanes, as well as the ensuing lane changing maneuvers. It is confirmed that the lower the speed limit, the higher the occupancy to achieve a given flow. This result has been observed even for relatively high flows and low speed limits. For instance, a stable flow of 1942 veh/h/lane has been measured with the 40 km/h speed limit in force. The corresponding occupancy was 33%, doubling the typical occupancy for this flow in the absence of speed limits. This means that VSL strategies aiming to restrict the mainline flow on a freeway by using low speed limits will need to be applied carefully, avoiding conditions as the ones presented here, where speed limits have a reduced ability to limit flows. On the other hand, VSL strategies trying to get the most from the increased vehicle storage capacity of freeways under low speed limits might be rather promising. Additionally, results show that lower speed limits increase the speed differences across lanes for moderate demands. This, in turn, also increases the lane changing rate. This means that VSL strategies aiming to homogenize traffic and reduce lane changing activity might not be successful when adopting such low speed limits. In contrast, lower speed limits widen the range of flows under uniform lane flow distributions, so that, even for moderate to low demands, the under-utilization of any lane is avoided. These findings are useful for the development of better traffic models that are able to emulate these effects. Moreover, they are crucial for the implementation and assessment of VSL strategies and other traffic control algorithms.Peer ReviewedPostprint (published version

    A review of traffic simulation software

    Get PDF
    Computer simulation of tra c is a widely used method in research of tra c modelling, planning and development of tra c networks and systems. Vehicular tra c systems are of growing concern and interest globally and modelling arbitrarily complex tra c systems is a hard problem. In this article we review some of the tra c simulation software applications, their features and characteristics as well as the issues these applications face. Additionally, we introduce some algorithmic ideas, underpinning data structural approaches and quanti able metrics that can be applied to simulated model systems

    Multi-Paradigm Reasoning for Access to Heterogeneous GIS

    Get PDF
    Accessing and querying geographical data in a uniform way has become easier in recent years. Emerging standards like WFS turn the web into a geospatial web services enabled place. Mediation architectures like VirGIS overcome syntactical and semantical heterogeneity between several distributed sources. On mobile devices, however, this kind of solution is not suitable, due to limitations, mostly regarding bandwidth, computation power, and available storage space. The aim of this paper is to present a solution for providing powerful reasoning mechanisms accessible from mobile applications and involving data from several heterogeneous sources. By adapting contents to time and location, mobile web information systems can not only increase the value and suitability of the service itself, but can substantially reduce the amount of data delivered to users. Because many problems pertain to infrastructures and transportation in general and to way finding in particular, one cornerstone of the architecture is higher level reasoning on graph networks with the Multi-Paradigm Location Language MPLL. A mediation architecture is used as a “graph provider” in order to transfer the load of computation to the best suited component – graph construction and transformation for example being heavy on resources. Reasoning in general can be conducted either near the “source” or near the end user, depending on the specific use case. The concepts underlying the proposal described in this paper are illustrated by a typical and concrete scenario for web applications
    • …
    corecore