6,455 research outputs found

    Infectivity Enhances Prediction of Viral Cascades in Twitter

    Get PDF
    Models of contagion dynamics, originally developed for infectious diseases, have proven relevant to the study of information, news, and political opinions in online social systems. Modelling diffusion processes and predicting viral information cascades are important problems in network science. Yet, many studies of information cascades neglect the variation in infectivity across different pieces of information. Here, we employ early-time observations of online cascades to estimate the infectivity of distinct pieces of information. Using simulations and data from real-world Twitter retweets, we demonstrate that these estimated infectivities can be used to improve predictions about the virality of an information cascade. Developing our simulations to mimic the real-world data, we consider the effect of the limited effective time for transmission of a cascade and demonstrate that a simple model for slow but non-negligible decay of the infectivity captures the essential properties of retweet distributions. These results demonstrate the interplay between the intrinsic infectivity of a tweet and the complex network environment within which it diffuses, strongly influencing the likelihood of becoming a viral cascade.Comment: 16 pages, 10 figure

    Competing contagion processes: Complex contagion triggered by simple contagion

    Full text link
    Empirical evidence reveals that contagion processes often occur with competition of simple and complex contagion, meaning that while some agents follow simple contagion, others follow complex contagion. Simple contagion refers to spreading processes induced by a single exposure to a contagious entity while complex contagion demands multiple exposures for transmission. Inspired by this observation, we propose a model of contagion dynamics with a transmission probability that initiates a process of complex contagion. With this probability nodes subject to simple contagion get adopted and trigger a process of complex contagion. We obtain a phase diagram in the parameter space of the transmission probability and the fraction of nodes subject to complex contagion. Our contagion model exhibits a rich variety of phase transitions such as continuous, discontinuous, and hybrid phase transitions, criticality, tricriticality, and double transitions. In particular, we find a double phase transition showing a continuous transition and a following discontinuous transition in the density of adopted nodes with respect to the transmission probability. We show that the double transition occurs with an intermediate phase in which nodes following simple contagion become adopted but nodes with complex contagion remain susceptible.Comment: 9 pages, 4 figure

    A Comparison of Spatial-based Targeted Disease Containment Strategies using Mobile Phone Data

    Get PDF
    Epidemic outbreaks are an important healthcare challenge, especially in developing countries where they represent one of the major causes of mortality. Approaches that can rapidly target subpopulations for surveillance and control are critical for enhancing containment processes during epidemics. Using a real-world dataset from Ivory Coast, this work presents an attempt to unveil the socio-geographical heterogeneity of disease transmission dynamics. By employing a spatially explicit meta-population epidemic model derived from mobile phone Call Detail Records (CDRs), we investigate how the differences in mobility patterns may affect the course of a realistic infectious disease outbreak. We consider different existing measures of the spatial dimension of human mobility and interactions, and we analyse their relevance in identifying the highest risk sub-population of individuals, as the best candidates for isolation countermeasures. The approaches presented in this paper provide further evidence that mobile phone data can be effectively exploited to facilitate our understanding of individuals' spatial behaviour and its relationship with the risk of infectious diseases' contagion. In particular, we show that CDRs-based indicators of individuals' spatial activities and interactions hold promise for gaining insight of contagion heterogeneity and thus for developing containment strategies to support decision-making during country-level pandemics
    • …
    corecore