231 research outputs found

    Improving the autonomy of a Mid-Drive motor electric bicycle based on system efficiency maps and its performance

    Get PDF
    Around the world, the e-bike has evolved from a recreational and sports object to an increasingly used means of transportation. Due to this, improving aspects such as range and energy efficiency has become very relevant. This article presents experimental models for the components’ efficiency of a mid-drive motor e-bike (charger; battery; and controller, motor, and reduction gears subsystem), and integrates them with previously elaborated models for the chain transmission system, thus generating an overall efficiency map of the e-bike. The range of the electric bicycle is analyzed by integrating the efficiency map of the system and its performance mathematical model, aiming to determine the per unit of distance battery energy consumption. The above-mentioned calculations are applied to develop a management strategy that can determine the optimal assistance level and chain transmission ratio, maximizing range and leaving speed unaffected. The driving strategy was compared against other driving techniques using computational analysis, this allowed for the observation of the proposed strategy improving the system’s range by reducing the battery energy consumption

    FCSIT Research Bulletin 2016

    Get PDF
    The FCSIT Research Bulletin is an annual publication of the Faculty of Computer Science and Information Technology, UNIMAS. The purpose of FCSIT Research Bulletin is to disseminate information that represent the current state of the research activities, publications, research findings, training, conferences and seminar conducted by the academicians in the faculty

    Decarbonisation of transport: options and challenges

    Get PDF
    This EASAC report reviews options for reducing greenhouse gas (GHG) emissions from European transport. It argues for stronger policies to bridge the gap between the GHG emission reductions that will be delivered by current policies and the levels needed to limit global warming to less than 2°C or even 1.5°C (Paris Agreement). The report focusses on road transport because, in the EU, this contributes 72% of transport GHG emissions. EASAC recommends a combination of transitional measures for the next 10-15 years and sustainable measures for the long term, based on a three level policy framework: avoid and contain demand for transport services; shift passengers and freight to transport modes with lower emissions (trains, buses and ships); and improve performance through vehicle design, more efficient powertrains and replacing fossil fuels with sustainable energy carriers including low-carbon electricity, hydrogen and synthetic fuels. Opportunities for the EU to strengthen its industrial competitiveness and create high quality jobs are also discussed

    Biorefarmeries: Milking ethanol from algae for the mobility of tomorrow

    Get PDF
    The idea of this project is to fully exploit microalgae to the best of its potential, possibly proposing a sort of fourth generation fuel based on a continuous milking of macro- and microorganisms (as cows in a milk farm), which produce fuel by photosynthetic reactions. This project proposes a new transportation concept supported by a new socio-economic approach, in which biofuel production is based on biorefarmeries delivering fourth generation fuels which also have decarbonization capabilities, potential negative CO2 emissions plus positive impacts on mobility, the automotive Industry, health and environment and the econom

    Development of flexible, durable and ionic materials based on poly(acrylamide) hydrogels for soft conducting and sensing applications

    Get PDF
    Soft ionic hydrogels have garnered significant interest for their applications in soft electronics and tissue engineering. However, further demands are still on the rise for developing these materials to possess flexibility, durability, low cost, non-toxic and reliable conductivity. In this work, a poly(acrylamide) (PAAm) hydrogel containing salt was utilised for its significant features such as high flexibility and excellent conductivity. Therefore, several hydrogels were prepared from the polymerisation reaction of the mononer acrylamide (AAm) to produce different polymers networks of PAAm hydrogels by the use of different crosslinking materials and methods aiming to optimise their mechanical and electrical characteristics, with the aim of applying these hydrogels in different applications such as soft sensing and conducting devices. Ionic-covalent entanglement hydrogels were prepared by mixing cross-linked gellan gum (GG) and CaCl2 ionically with PAAm and methylenbis(acrylamide) (MBAAm) covalently. The mechanical behaviour was modified by altering the ionic and the covalent polymers ratio. The electrical properties were investigated with varying hydrogel ratios which displayed optimised mechanical properties for use in conducting and sensing applications. It was observed that gels prepared with 0.1 M CaCl2 and 1.11 % (w/v) GG with PAAm consisting of 4.44 % (w/v) and AAm with 3 % (w/v) MBAAm exhibited optimum mechanical characteristics reporting 216±12 kPa (compressive stress to failure) for the compression test analysis and 264±5kPa (shear modulus) for the oscillatory rheology demonstration. The electrical conductivity and the water content for the optimised ICE gel displayed a noticeable increase from 3.3±0.5 mS.cm-1 to 127±15 mS.cm-1 and from 78 % to 85 %, respectively, after it was immersed in 2.7 M NaCl solution

    Definition and verification of a set of reusable reference architectures for hybrid vehicle development

    Get PDF
    Current concerns regarding climate change and energy security have resulted in an increasing demand for low carbon vehicles, including: more efficient internal combustion engine vehicles, alternative fuel vehicles, electric vehicles and hybrid vehicles. Unlike traditional internal combustion engine vehicles and electric vehicles, hybrid vehicles contain a minimum of two energy storage systems. These are required to deliver power through a complex powertrain which must combine these power flows electrically or mechanically (or both), before torque can be delivered to the wheel. Three distinct types of hybrid vehicles exist, series hybrids, parallel hybrids and compound hybrids. Each type of hybrid presents a unique engineering challenge. Also, within each hybrid type there exists a wide range of configurations of components, in size and type. The emergence of this new family of hybrid vehicles has necessitated a new component to vehicle development, the Vehicle Supervisory Controller (VSC). The VSC must determine and deliver driver torque demand, dividing the delivery of that demand from the multiple energy storage systems as a function of efficiencies and capacities. This control component is not commonly a standalone entity in traditional internal combustion vehicles and therefore presents an opportunity to apply a systems engineering approach to hybrid vehicle systems and VSC control system development. A key non-­‐functional requirement in systems engineering is reusability. A common method for maximising system reusability is a Reference Architecture (RA). This is an abstraction of the minimum set of shared system features (structure, functions, interactions and behaviour) that can be applied to a number of similar but distinct system deployments. It is argued that the employment of RAs in hybrid vehicle development would reduce VSC development time and cost. This Thesis expands this research to determine if one RA is extendable to all hybrid vehicle types and combines the scientific method with the scenario testing method to verify the reusability of RAs by demonstration. A set of hypotheses are posed: Can one RA represent all hybrid types? If not, can a minimum number of RAs be defined which represents all hybrid types? These hypotheses are tested by a set of scenarios. The RA is used as a template for a vehicle deployment (a scenario), which is then tested numerically, thereby verifying that the RA is valid for this type of vehicle. This Thesis determines that two RAs are required to represent the three hybrid vehicle types. One RA is needed for series hybrids, and the second RA covers parallel and compound hybrids. This is done at a level of abstraction which is high enough to avoid system specific features but low enough to incorporate detailed control functionality. One series hybrid is deployed using the series RA into simulation, hardware and onto a vehicle for testing. This verifies that the series RA is valid for this type of vehicle. The parallel RA is used to develop two sub-­‐types of parallel hybrids and one compound hybrid. This research has been conducted with industrial partners who value, and are employing, the findings of this research in their hybrid vehicle development programs

    CIB W115 Green Design Conference:Sarajevo, Bosnia and Herzegovina 27 - 30 September 2012

    Get PDF
    • 

    corecore