56 research outputs found

    An improved genetic algorithm for multi-AGV dispatching problem with unloading setup time in a matrix manufacturing workshop

    Get PDF
    This paper investigates a novel problem concerning material delivery in a matrix manufacturing workshop, specifically the multi-automated guided vehicle (AGV) dispatching problem with unloading setup time (MAGVDUST). The objective of the problem is to minimize transportation costs, including travel costs, time penalty costs, AGV costs, and unloading setup time costs. To solve the MAGVDUST, this paper builds a mixed-integer linear programming model and proposes an improved genetic algorithm (IGA). In the IGA, an improved nearest-neighbor-based heuristic is proposed to generate a high-quality initial solution. Several advanced technologies are developed to balance local exploitation and global exploration of the algorithm, including an optimal solution preservation strategy in the selection process, two well-designed crossovers in the crossover process, and a mutation based on Partially Mapped Crossover strategy in the mutation process. In conclusion, the proposed algorithm has been thoroughly evaluated on 110 instances from an actual electronic factory and has demonstrated its superior performance compared to state-of-the-art algorithms in the existing literature

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Immersive Horizons: Exploring the Transformative Power of Virtual Reality Across Economic Sectors

    Get PDF
    open access articleThe scholarly discourse surrounding the manifold advantages, applications, and limitations of implementing Virtual Reality (VR) in the contemporary milieu has burgeoned over time. VR holds immense potential, attracting fervent interest from governmental and private entities alike. Nevertheless, the existing body of literature pertaining to the expanding utilization of VR in diverse economic sectors remains scant. Therefore, the primary objective of this study is to furnish a comprehensive literature review encompassing VR applications across various economic domains while elucidating concerns surrounding its integration within engineering education. A total of 108 publications were extracted from prominent databases such as Scopus, Elsevier, Science Direct, and Google Scholar, with a subsequent review of 51 relevant works. These scrutinized journals were published between 2015 and 2022 and were predominantly authored in English. The reviewed publications encompassed VR applications in education, robotics, healthcare, transportation, sports, agriculture, governance, security, and media. The study’s findings unveiled significant advancements in VR implementation within engineering education, medical training, cognitive augmentation, aircraft assembly, governance, and diverse other spheres. Notwithstanding these achievements, impediments to VR deployment were identified, stemming from financial exigencies, cultural and conventional norms, with scant evidence of VR’s prevalence in underdeveloped nations, given that all the assessed research originated from developed economies. Additionally, the limitations of this review encompassed a small sample size and a narrowly focused demographic in the examined articles. Nevertheless, despite these constraints, the research highlights substantial progress in VR utilization over the preceding decade

    Intelligent maintenance management in a reconfigurable manufacturing environment using multi-agent systems

    Get PDF
    Thesis (M. Tech.) -- Central University of Technology, Free State, 2010Traditional corrective maintenance is both costly and ineffective. In some situations it is more cost effective to replace a device than to maintain it; however it is far more likely that the cost of the device far outweighs the cost of performing routine maintenance. These device related costs coupled with the profit loss due to reduced production levels, makes this reactive maintenance approach unacceptably inefficient in many situations. Blind predictive maintenance without considering the actual physical state of the hardware is an improvement, but is still far from ideal. Simply maintaining devices on a schedule without taking into account the operational hours and workload can be a costly mistake. The inefficiencies associated with these approaches have contributed to the development of proactive maintenance strategies. These approaches take the device health state into account. For this reason, proactive maintenance strategies are inherently more efficient compared to the aforementioned traditional approaches. Predicting the health degradation of devices allows for easier anticipation of the required maintenance resources and costs. Maintenance can also be scheduled to accommodate production needs. This work represents the design and simulation of an intelligent maintenance management system that incorporates device health prognosis with maintenance schedule generation. The simulation scenario provided prognostic data to be used to schedule devices for maintenance. A production rule engine was provided with a feasible starting schedule. This schedule was then improved and the process was determined by adhering to a set of criteria. Benchmarks were conducted to show the benefit of optimising the starting schedule and the results were presented as proof. Improving on existing maintenance approaches will result in several benefits for an organisation. Eliminating the need to address unexpected failures or perform maintenance prematurely will ensure that the relevant resources are available when they are required. This will in turn reduce the expenditure related to wasted maintenance resources without compromising the health of devices or systems in the organisation

    Usability-enhanced coordination design of geovisualisations to communicate coastal flood risk information

    Get PDF
    For at least two millennia and probably much longer, the traditional vehicle for communicating geographical information to end-users has been the map. With the advent of computers, the means of both producing and consuming maps have radically been transformed, while the inherent nature of the information product has also expanded and diversified rapidly. This has given rise in recent years to the new concept of geovisualisation (GVIS), which draws on the skills of the traditional cartographer, but extends them into three spatial dimensions and may also add temporality, photorealistic representations and/or interactivity. Demand for GVIS technologies and their applications has increased significantly in recent years, driven by the need to study complex geographical events and in particular their associated consequences and to communicate the results of these studies to a diversity of audiences and stakeholder groups. GVIS has data integration, multi-dimensional spatial display advanced modelling techniques, dynamic design and development environments and field-specific application needs. To meet with these needs, GVIS tools should be both powerful and inherently usable, in order to facilitate their role in helping interpret and communicate geographic problems. However no framework currently exists for ensuring this usability. The research presented here seeks to fill this gap, by addressing the challenges of incorporating user requirements in GVIS tool design. It starts from the premise that usability in GVIS should be incorporated and implemented throughout the whole design and development process. To facilitate this, Subject Technology Matching (STM) is proposed as a new approach to assessing and interpreting user requirements. Based on STM, a new design framework called Usability Enhanced Coordination Design (UECD) is ten presented with the purpose of leveraging overall usability of the design outputs. UECD places GVIS experts in a new key role in the design process, to form a more coordinated and integrated workflow and a more focused and interactive usability testing. To prove the concept, these theoretical elements of the framework have been implemented in two test projects: one is the creation of a coastal inundation simulation for Whitegate, Cork, Ireland; the other is a flooding mapping tool for Zhushan Town, Jiangsu, China. The two case studies successfully demonstrated the potential merits of the UECD approach when GVIS techniques are applied to geographic problem solving and decision making. The thesis delivers a comprehensive understanding of the development and challenges of GVIS technology, its usability concerns, usability and associated UCD; it explores the possibility of putting UCD framework in GVIS design; it constructs a new theoretical design framework called UECD which aims to make the whole design process usability driven; it develops the key concept of STM into a template set to improve the performance of a GVIS design. These key conceptual and procedural foundations can be built on future research, aimed at further refining and developing UECD as a useful design methodology for GVIS scholars and practitioners

    Aeronautical engineering: A continuing bibliography with indexes (supplement 246)

    Get PDF
    This bibliography lists 690 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    • …
    corecore