1,463 research outputs found

    Test-retest reliability of the magnetic mismatch negativity response to sound duration and omission deviants

    Get PDF
    Mismatch negativity (MMN) is a neurophysiological measure of auditory novelty detection that could serve as a translational biomarker of psychiatric disorders, such as schizophrenia. However, the replicability of its magnetoencephalographic (MEG) counterpart (MMNm) has been insufficiently addressed. In the current study, test-retest reliability of the MMNm response to both duration and omission deviants was evaluated over two MEG sessions in 16 healthy adults. MMNm amplitudes and latencies were obtained at both sensor- and source-level using a cortically-constrained minimum-norm approach. Intraclass correlations (ICC) were derived to assess stability of MEG responses over time. In addition, signal-to-noise ratios (SNR) and within-subject statistics were obtained in order to determine MMNm detectability in individual participants. ICC revealed robust values at both sensor- and source-level for both duration and omission MMNm amplitudes (ICC = 0.81-0.90), in particular in the right hemisphere, while moderate to strong values were obtained for duration MMNm and omission MMNm peak latencies (ICC = 0.74-0.88). Duration MMNm was robustly identified in individual participants with high SNR, whereas omission MMNm responses were only observed in half of the participants. Our data indicate that MMNm to unexpected duration changes and omitted sounds are highly reproducible, providing support for the use of MEG-parameters in basic and clinical research

    Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise

    Get PDF
    Short-term adjustments of signal characteristics allow animals to maintain reliable communication in noise. Noise-dependent vocal plasticity often involves simultaneous changes in multiple parameters. Here, we quantified for the first time the relative contributions of signal amplitude, duration, and redundancy for improving signal detectability in noise. To this end, we used a combination of behavioural experiments on pale spear-nosed bats (Phyllostomus discolor) and signal detection models. In response to increasing noise levels, all bats raised the amplitude of their echolocation calls by 1.8-7.9 dB (the Lombard effect). Bats also increased signal duration by 13%-85%, corresponding to an increase in detectability of 1.0-5.3 dB. Finally, in some noise conditions, bats increased signal redundancy by producing more call groups. Assuming optimal cognitive integration, this could result in a further detectability improvement by up to 4 dB. Our data show that while the main improvement in signal detectability was due to the Lombard effect, increasing signal duration and redundancy can also contribute markedly to improving signal detectability. Overall, our findings demonstrate that the observed adjustments of signal parameters in noise are matched to how these parameters are processed in the receiver's sensory system, thereby facilitating signal transmission in fluctuating environments

    Hearing Without Ears

    Get PDF
    We report on on-going work investigating the feasibility of using tissue conduction to evince auditory spatial perception. Early results indicate that it is possible to coherently control externalization, range, directionality (including elevation), movement and some sense of spaciousness without presenting acoustic signals to the outer ear. Signal control techniques so far have utilised discrete signal feeds, stereo and 1st order ambisonic hierarchies. Some deficiencies in frontal externalization have been observed. We conclude that, whilst the putative components of the head related transfer function are absent, empirical tests indicate that coherent equivalents are perceptually utilisable. Some implications for perceptual theory and technological implementations are discussed along with potential practical applications and future lines of enquiry

    Tissue-conducted spatial sound fields

    Get PDF
    We describe experiments using multiple cranial transducers to achieve auditory spatial perceptual impressions via bone (BC) and tissue conduction (TC), bypassing the peripheral hearing apparatus. This could be useful in cases of peripheral hearing damage or where ear-occlusion is undesirable. Previous work (e.g. Stanley and Walker 2006, MacDonald and Letowski 2006)1,2 indicated robust lateralization is feasible via tissue conduction. We have utilized discrete signals, stereo and first order ambisonics to investigate control of externalization, range, direction in azimuth and elevation, movement and spaciousness. Early results indicate robust and coherent effects. Current technological implementations are presented and potential development paths discussed

    Field testing an acoustic lighthouse : Combined acoustic and visual cues provide a multimodal solution that reduces avian collision risk with tall human-made structures

    Get PDF
    Billions of birds fatally collide with human-made structures each year. These mortalities have consequences for population viability and conservation of endangered species. This source of human-wildlife conflict also places constraints on various industries. Furthermore, with continued increases in urbanization, the incidence of collisions continues to increase. Efforts to reduce collisions have largely focused on making structures more visible to birds through visual stimuli but have shown limited success. We investigated the efficacy of a multimodal combination of acoustic signals with visual cues to reduce avian collisions with tall structures in open airspace. Previous work has demonstrated that a combination of acoustic and visual cues can decrease collision risk of birds in captive flight trials. Extending to field tests, we predicted that novel acoustic signals would combine with the visual cues of tall communication towers to reduce collision risk for birds. We broadcast two audible frequency ranges (4 to 6 and 6 to 8 kHz) in front of tall communication towers at locations in the Atlantic migratory flyway of Virginia during annual migration and observed birds’ flight trajectories around the towers. We recorded an overall 12–16% lower rate of general bird activity surrounding towers during sound treatment conditions, compared with control (no broadcast sound) conditions. Furthermore, in 145 tracked “at-risk” flights, birds reduced flight velocity and deflected flight trajectories to a greater extent when exposed to the acoustic stimuli near the towers. In particular, the 4 to 6 kHz stimulus produced the greater effect sizes, with birds altering flight direction earlier in their trajectories and at larger distances from the towers, perhaps indicating that frequency range is more clearly audible to flying birds. This “acoustic lighthouse” concept reduces the risk of collision for birds in the field and could be applied to reduce collision risk associated with many human-made structures, such as wind turbines and tall buildings

    Acoustic assessment of SIMRAD EK60 high frequency echo sounder signals (120 & 200 kHz) in the context of marine mammal monitoring

    Get PDF
    The use of active high frequency echo sounders for commercial activities and marine research has been increasing in recent years. Compared to other anthropogenic noise sources, high frequency echo sounders have received little attention in terms of their potential impacts on marine life. However, while these devices typically operate at centre frequencies outside the hearing range of most marine species, recent work has demonstrated that they may produce unintended energy at lower frequencies. These lower frequencies may extend into the audible range for several species of marine mammals and have the potential to affect their behaviour (Deng et al. 2014). Given the theoretical detectability of these lower frequencies by marine mammals, both signal types have the potential to elicit behavioural responses towards them. This should be considered in environmental impact assessments of activities using these devices and when planning marine mammal monitoring studies alongside ecosystem studies using active acoustic sonar systems

    Signal identification in ERP data by decorrelated Higher Criticism Thresholding

    Get PDF
    Event-related potentials (ERPs) are intensive recordings of electrical activity along the scalp time-locked to motor, sensory, or cognitive events. A main objective in ERP studies is to select (rare) time points at which (weak) ERP amplitudes (features) are significantly associated with experimental variable of interest. The Higher Criticism Thresholding (HCT), as an optimal signal detection procedure in the " rare-and-weak " paradigm, appears to be ideally suited for identifying ERP features. However, ERPs exhibit complex temporal dependence patterns violating the assumption under which signal identification can be achieved efficiently for HCT. This article first highlights this impact of dependence in terms of instability of signal estimation by HCT. A factor modeling for the covariance in HCT is then introduced to decorrelate test statistics and to restore stability in estimation. The detection boundary under factor-analytic dependence is derived and the phase diagram is correspondingly extended. Using simulations and a real data analysis example, the proposed method is shown to estimate more efficiently the support of signals compared with standard HCT and other HCT approaches based on a shrinkage estimation of the covariance matrix

    Effects of Parameters of Spectrally Remote Frequencies on Binaural Processing

    Get PDF
    • …
    corecore