58,352 research outputs found

    The cat's cradle network

    Get PDF
    In this paper we will argue that the representation of context in knowledge management is appropriately served by the representation of the knowledge networks in an historicised form. Characterising context as essentially extra to any particular knowledge representation, we argue that another dimension to these be modelled, rather than simply elaborating a form in its own terms. We present the formalism of the cat's cradle network, and show how it can be represented by an extension of the Pathfinder associative network that includes this temporal dimension, and allows evolutions of understandings to be traced. Grounding its semantics in communities of practice ensures utility and cohesiveness, which is lost when mere externalities of a representation are communicated in fully fledged forms. The scheme is general and subsumes other formalisms for knowledge representation. The cat's cradle network enables us to model such community-based social constructs as pattern languages, shared memory and patterns of trust and reliance, by placing their establishment in a structure that shows their essential temporality

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Tangled Nature: A model of emergent structure and temporal mode among co-evolving agents

    Full text link
    Understanding systems level behaviour of many interacting agents is challenging in various ways, here we'll focus on the how the interaction between components can lead to hierarchical structures with different types of dynamics, or causations, at different levels. We use the Tangled Nature model to discuss the co-evolutionary aspects connecting the microscopic level of the individual to the macroscopic systems level. At the microscopic level the individual agent may undergo evolutionary changes due to mutations of strategies. The micro-dynamics always run at a constant rate. Nevertheless, the system's level dynamics exhibit a completely different type of intermittent abrupt dynamics where major upheavals keep throwing the system between meta-stable configurations. These dramatic transitions are described by a log-Poisson time statistics. The long time effect is a collectively adapted of the ecological network. We discuss the ecological and macroevolutionary consequences of the adaptive dynamics and briefly describe work using the Tangled Nature framework to analyse problems in economics, sociology, innovation and sustainabilityComment: Invited contribution to Focus on Complexity in European Journal of Physics. 25 page, 1 figur

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Complexity, Collective Effects and Modelling of Ecosystems: formation, function and stability

    Full text link
    We discuss the relevance of studying ecology within the framework of Complexity Science from a statistical mechanics approach. Ecology is concerned with understanding how systems level properties emerge out of the multitude of interactions amongst large numbers of components, leading to ecosystems that possess the prototypical characteristics of complex systems. We argue that statistical mechanics is at present the best methodology available to obtain a quantitative description of complex systems, and that ecology is in urgent need of ``integrative'' approaches that are quantitative and non-stationary. We describe examples where combining statistical mechanics and ecology has led to improved ecological modelling and, at the same time, broadened the scope of statistical mechanics.Comment: 11 pages and 1 figur

    Creativity as Cognitive design \ud The case of mesoscopic variables in Meta-Structures\ud

    Get PDF
    Creativity is an open problem which has been differently approached by several disciplines since a long time. In this contribution we consider as creative the constructivist design an observer does on the description levels of complex phenomena, such as the self-organized and emergent ones ( e.g., Bùnard rollers, Belousov-Zhabotinsky reactions, flocks, swarms, and more radical cognitive and social emergences). We consider this design as related to the Gestaltian creation of a language fit for representing natural processes and the observer in an integrated way. Organised systems, both artificial and most of the natural ones are designed/ modelled according to a logical closed model which masters all the inter-relation between their constitutive elements, and which can be described by an algorithm or a single formal model. We will show there that logical openness and DYSAM (Dynamical Usage of Models) are the proper tools for those phenomena which cannot be described by algorithms or by a single formal model. The strong correlation between emergence and creativity suggests that an open model is the best way to provide a formal definition of creativity. A specific application relates to the possibility to shape the emergence of Collective Behaviours. Different modelling approaches have been introduced, based on symbolic as well as sub-symbolic rules of interaction to simulate collective phenomena by means of computational emergence. Another approach is based on modelling collective phenomena as sequences of Multiple Systems established by percentages of conceptually interchangeable agents taking on the same roles at different times and different roles at the same time. In the Meta-Structures project we propose to use mesoscopic variables as creative design, invention, good continuity and imitation of the description level. In the project we propose to define the coherence of sequences of Multiple Systems by using the values taken on by the dynamic mesoscopic clusters of its constitutive elements, such as the instantaneous number of elements having, in a flock, the same speed, distance from their nearest neighbours, direction and altitude. In Meta-Structures the collective behaviour’s coherence corresponds, for instance, to the scalar values taken by speed, distance, direction and altitude along time, through statistical strategies of interpolation, quasi-periodicity, levels of ergodicity and their reciprocal relationship. In this case the constructivist role of the observer is considered creative as it relates to neither non-linear replication nor transposition of levels of description and models used for artificial systems, like reductionism. Creativity rather lies in inventing new mesoscopic variables able to identify coherent patterns in complex systems. As it is known, mesoscopic variables represent partial macroscopic properties of a system by using some of the microscopic degrees of freedom possessed by composing elements. Such partial usage of microscopic as well as macroscopic properties allows a kind of Gestaltian continuity and imitation between levels of descriptions for mesoscopic modelling. \ud \u

    Techno-economic energy models for low carbon business parks

    Get PDF
    To mitigate climate change, global greenhouse gas emissions need to be reduced substantially. Industry and energy sector together are responsible for a major share of those emissions. Hence the development of low carbon business parks by maximising energy efficiency and changing to collective, renewable energy systems at local level holds a high reduction potential. Yet, there is no uniform approach to determine the optimal combination and operation of energy technologies composing such energy systems. However, techno-economic energy models, custom tailored for business parks, can offer a solution, as they identify the configuration and operation that provide an optimal trade-off between economic and environmental performances. However, models specifically developed for industrial park energy systems are not detected in literature, so identifying an existing model that can be adapted is an essential step. In this paper, energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of models are selected and described. Subsequently, main model features are compared, a practical typology is proposed and applicability towards modelling industrial park energy systems is evaluated. Energy system evolution models offer the most perspective to compose a holistic, but simplified model, whereas advanced energy system integration models can adequately be employed to assess energy integration for business clusters up to entire industrial sites. Energy system simulation models, however, provide deeper insight in the system’s operation
    • 

    corecore