4,737 research outputs found

    Phase change of iron ore reduction process using EFB as reducing agent at 900-1200°C

    Get PDF
    Treatment of low grade iron ore involved reduction of oxygen in iron oxide by using reductant such as carbon monoxide or hydrogen gas. Presently, carboneous materials such as coke/coal are widely used as a source to provide reducing gas, but some problem arises from this material as the gas can harm the environments. Therefore, empty fruit bunch biomass from oil palm becomes an alternative to replace the usage of coke/coal as their major composition is carbon and hydrogen. The idea of replacing coke with biomass will reduce the amount of carbon dioxide release as biomass is a carbon neutral and renewable source, and at the same time abundance of waste from oil palm industries can be overcome. Therefore, the aim of this research is to upgrade the low grade iron with reducibility more than 50% being used in iron and steel making. In this research, low grade iron ore are mixed together with EFB then is making into composite pellet before being reduced at certain parameter chosen. The variables involved in this research is composition EFB (10%, 30% and 50%), temperature (1000°C, 1100°C and 1200°C) and reduction time is fixed with 30 minutes. From the experiment conducted, the highest reducibility achieved is 76.37% at temperature 1200°C. While XRD analysis shows the existence of metallic iron phase started to form at 1000°C with composition of 30% of EFB. Meanwhile, from magnetization test show that at 1200°C the highest magnetic susceptibility is achieved as the dominance phase at 1200°C is metallic phase. Therefore it is an interesting alternative to replace coke with biomass for reducing agent in upgrading low grade iron into workable ore

    Floristic diversity and patch dynamics in hyper-disturbed tropical lowland rainforest fragments in north Queensland: no evidence for cyclone-disturbance and fragmentation driving species assemblages towards early-successional states

    Get PDF
    Tropical cyclones reshape the structure, composition and successional trajectories of forest ecosystems. Climate warming is expected to increase the intensity and impact of these storms while habitat fragmentation further modifies trajectories of response. Many studies over the past decade suggest that tropical forest fragments are locked into a future dominated by edge-favoured pioneer species, dramatic loss of late-successional, large-fruited species, and invasion by exotic weeds. However, this study shows that severely storm-damaged and fragmented tropical forests are remarkably resilient, with a capacity for rebuilding and maintaining plant species composition and diversity. My study followed two severe tropical cyclone events, Cyclones Larry (2006) and Yasi (2011) in the Australian Wet Tropics. To date, no comparable investigation has measured the effects of successive severe tropical cyclone events on different forest habitats in lowland rainforest. My study investigated: 1) immediate effects of a second severe cyclone on the structural characteristics of different forest habitat types; 2) family and species-level responses to damage and short-term survival rates; 3) plant community and species-level assemblages across different forest habitats; and 4) life-history successional characteristics of species for different habitat types. My results showed all trees sustained some level of damage (i.e. minor to severe) due to the effects of these two severe cyclone events. About 75% of trees had their main stem snapped compared to 11% of trees with major breakage of branches and less than 4% were uprooted. 10% of all trees sustained only minor damage including partial defoliation, twig-snapping and minor branches snapped. Snapping of tree trunks was higher in fragmented forest compared to continuous forest whereas snapping of major branches was significantly higher in continuous forest and edges. Trees resprouted within weeks of the cyclone and 96% of standing stems continued to show vigourous growth after eighteen months. Although there was a dramatic loss of large canopy and emergent trees during Cyclone Larry five years earlier, 83% of all stems in my plots were identified as belonging to mid-late and late successional species, while only 13% of stems were early-mid successional species. These stems are mainly saplings (≤ 10-20cm DBH) which have survived successive severe cyclone events within the understorey 'vine tangles.' I found no evidence for proliferation of early successional or pioneer species in any of the habitat types, including fragmented forest sites, within the time-frame of this study. No evidence was found for elevated levels of exotic weed invasion following these events with these species comprising less than 1% of total assemblages. All forest habitat types showed an unexpected capacity for resistance and resilience following the combined effects of fragmentation and two severe tropical cyclones. My data suggest that forest habitat types influence successional life-history characteristics but are not driving species assemblages in fragmented forests towards proliferation of short-lived, edge-favoured generalists (i.e. pioneer species)

    Agrometeorological forecasting

    Get PDF
    Agrometeorological forecasting covers all aspects of forecasting in agrometeorology. Therefore, the scope of agrometeorological forecasting very largely coincides with the scope of agrometeorology itself. All on-farm and regional agrometeorological planning implies some form of impact forecasting, at least implicitly, so that decision-support tools and forecasting tools largely overlap. In the current chapter, the focus is on crops, but attention is also be paid to sectors that are often neglected by the agrometeorologist, such as those occurring in plant and animal protection. In addition, the borders between meteorological forecasts for agriculture and agrometeorological forecasts are not always clear. Examples include the use of weather forecasts for farm operations such as spraying pesticides or deciding on trafficability in relation to adverse weather. Many forecast issues by various national institutions (weather, but also commodity prices or flood warnings) are vital to the farming community, but they do not constitute agrometeorological forecasts. (Modified From the introduction of the chapter: Scope of agrometeorological forecasting)JRC.H.4-Monitoring Agricultural Resource

    Integrative biomechanics for tree ecology: beyond wood density and strength

    Get PDF
    International audienceFunctional ecology has long considered the support function as important, but its biomechanical complexity is only just being elucidated. We show here that it can be described on the basis of four biomechanical traits, two safety traits against winds (SW) and self-buckling (SB), and two motricity traits involved in sustaining an upright position, tropic motion velocity (MV) and posture control (PC). All these traits are integrated at the tree scale, combining tree size and shape together with wood properties. The assumption of trait constancy has been used to derive allometric scaling laws, but it was more recently found that observing their variations among environments and functional groups, or during ontogeny, provides more insights into adaptive syndromes of tree shape and wood properties. However, over-simplified expressions have often been used, possibly concealing key adaptive drivers. An extreme case of over-simplification is the use of wood basic density as a proxy for safety. Actually, since wood density is involved in stiffness, loads and construction costs, the impact of its variations on safety is non-trivial. Moreover, other wood features, especially the microfibril angle (MFA), are also involved. Furthermore, wood is not only stiff and strong, but it also acts as a motor for MV and PC. The relevant wood trait for that is maturation strain asymmetry. Maturation strains vary with cell wall characteristics such as MFA, rather than with wood density. Finally, the need for further studies about the ecological relevance of branching patterns, motricity traits and growth responses to mechanical loads is discussed

    Remote sensing data as a tool to monitor and mitigate natural catastrophes resulting from anthropogenic activities

    Get PDF
    This thesis demonstrates how remotely sensed satellite acquisitions can be used to addresses some of the natural catastrophes resulting from anthropogenic activities. Examples from both land and water systems are used to illustrate the breath of this toolbox. The effects of global climate change on biological systems and the wellbeing of everyday people are becoming less easy to ignore. In addition, our oceans are facing multiple large-scale stressors, including microplastics as a recently recognized threat, which place at risk the resources which a large percentage of the world’s population depends on for their livelihood. The cause of many of these changes stem from anthropogenic activities, but lacking understanding of complex ecosystems limits our ability to make definite conclusions as to cause and effect. The difficulty to collect on-the-ground data sufficient enough to capture processes working over scales of hundred of kilometers up to the entire globe is often a limitation to research. Remote sensing systems help ameliorate this issue through providing tools to better monitor environmental changes over large areas. The examples provided in this thesis focus on (Section I) tropical peatland fire characteristics and burning in Southeast Asia as a significant contributor to greenhouse gas emissions and (Section II) spread of river-based plastic pollution in coastal ocean systems. Section I specifically focuses on fires within Indonesia, which holds more than half of all known peatlands in the tropical zone and are estimated to represent a carbon pool of 82–92 gigatons. A brief description of recent development activities within Indonesia is presented in Section I of the Introduction, followed by meteorological processes responsible for extended drought periods in the region, and the situation of current fire control within the country. Chapter 1 presents an example of the large improvement in fire detection, as well as measurement of fire front characteristics, provided by a state-of-the-art thermal remote sensing. Chapter 2 goes into detail describing how an active satellite sensor system is able to provide much quicker and more accurate estimates of burned area for the tropics than other existing methods dependent on passive satellite sensor systems. Both these methods provide powerful tools for development of an improved system to monitor fire over Indonesia. The goal of such a monitoring system would be to reduce fire emissions from this large country, which according to global climate models play an important role in global climate change. Section II focuses on aquatic plastic pollution flowing from a freshwater system into the coastal oceans. A background of the issue of plastic pollution along with the current status of plastic debris in both oceans and inland river systems is presented in Section II of the Introduction. Chapter 3 describes development and comparison of two different modelling efforts to display how plastic particles being emitted from a major river are accumulating along the nearby coastline. The goal of this work is to present how remote sensing data could be used to in conjunction with ocean current modelling to create a comprehensive particle tracking monitoring system.Diese Arbeit zeigt, wie aus der Ferne wahrgenommene Satellitenaufnahmen dazu verwendet werden können, sich einigen Naturkatastrophen, die aus anthropogenen Aktivitäten resultieren, zu widmen. Anhand von Beispielen aus Land- und Wassersystemen wird der Umfang dieses technischen Werkzeugkastens dargestellt. Die Auswirkungen des globalen Klimawandels auf biologische Systeme und das Wohlbefinden des Menschen lassen sich nicht mehr ignorieren. Darüber hinaus sind unsere Ozeane mehreren großen Stressfaktoren ausgesetzt, einschließlich Mikroplastik als eine seit kurzem anerkennte Bedrohung, welche die Ressourcen gefährden, von denen der Lebensunterhalt eines großen Teils der Weltbevölkerung abhängt. Die Ursache vieler dieser Veränderungen liegt in anthropogenen Aktivitäten, aber mangelndes Verständnis für komplexe Ökosysteme begrenzt unsere Fähigkeit, eindeutige Rückschlüsse auf Ursache und Wirkung zu treffen. Die Schwierigkeit, Daten vor Ort zu sammeln, die ausreichen, um Prozesse zu erfassen, die über Hunderte von Kilometern bis hin zum gesamten Globus arbeiten, ist oft eine Einschränkung der Forschung. Fernerkundungssysteme tragen dazu bei, dieses Problem zu beheben, indem sie Werkzeuge zur besseren Überwachung von Umweltveränderungen in großen Gebieten bereitstellen. Die Beispiele in dieser Arbeit konzentrieren sich auf („Section I“) Feuermerkmale und Brandflächen der tropischen Torfgebiete in Südostasien als signifikanter Beitrag zu Treibhausgasemissionen und („Section II“) Ausbreitung von Fluss-basiertem Plastikmüll in küstennahen Meeressystemen. Section I konzentriert sich speziell auf die Brände in Indonesien, welches mehr als die Hälfte aller bekannten Torfgebiete in der tropischen Zone besitzt und auf einen Kohlenstoffpool von 82-92 Gigatonnen geschätzt wird. Eine kurze Beschreibung der jüngsten Entwicklungstätigkeiten in Indonesien wird in Section I der Einleitung vorgestellt, gefolgt von meteorologischen Prozessen, die für ausgedehnte Dürreperioden in der Region verantwortlich sind, und der Situation der aktuellen Feuerkontrolle innerhalb des Landes. Chapter 1 zeigt ein Beispiel für die große Verbesserung der Branddetektion sowie die Messung der Brandfronteigenschaften, die durch eine moderne thermische Fernerkundung erreicht werden können. In Chapter 2 wird ausführlich beschrieben, wie ein aktives Satellitensensorsystem in der Lage ist, schnellere und genauere Schätzungen der verbrannten Fläche für die Tropen zu liefern als andere existierende Methoden, die von passiven Satellitensensorsystemen abhängen. Beide Methoden bieten leistungsstarke Werkzeuge für die Entwicklung eines verbesserten Systems zur Brandüberwachung von Indonesien. Ziel eines solchen Überwachungssystems wäre es, Brandemissionen aus diesem großen Land zu reduzieren, das nach globalen Klimamodellen eine wichtige Rolle im globalen Klimawandel spielt. Section II konzentriert sich auf die Verschmutzung von Wasserplastik, die von einem Süßwassersystem in die Küstenmeere fließt. Ein Hintergrund des Problems der Plastikverschmutzung zusammen mit dem gegenwärtigen Status von Plastiktrümmern sowohl in Ozeanen als auch Binnenflusssystemen wird in Section II der Einleitung dargestellt. Chapter 3 beschreibt die Entwicklung und den Vergleich von zwei verschiedenen Modellierungsbemühungen, um zu zeigen, wie sich Kunststoffpartikel, die von einem großen Fluss emittiert werden, entlang der nahen Küstenlinie ansammeln. Das Ziel dieser Arbeit ist zu zeigen, wie Fernerkundungsdaten in Verbindung mit Meeresströmungsmodellierung verwendet werden können, um ein umfassendes Teilchenverfolgungsüberwachungssystem zu schaffen

    Innovative Foundation Alternative Inspired from Tree Roots

    Get PDF
    It is not easy to find a more efficient foundation system than the roots of a tree. Trees create a vast three-dimensional network of roots to support and anchor the critical above-ground trunks, leaves, and limbs. In this work, investigations are made for the feasibility of imitating such a technique and creating similar networks to support civil infrastructure, particularly those subjected to moment loads such as traffic signal posts. Some of the raised questions were: Is it feasible to have a shallow tree root-based foundation system to provide the same capacities as conventional foundation alternatives? If this is feasible: What would be the ideal depth of the Root Foundation System? How far should the roots extend to provide comparable support to a conventional deep foundation system? What diameter should the root bulb of the configuration be? How far should a vertical shaft extend into the ground? Hence, the main objective of this research is to identify and test the most effective Root Foundation System geometric configurations that can provide a similar capacity as a conventional foundation for traffic signal posts. Finite element model simulations on 54 different root-based foundation models show potential for replacing the conventional drilled shaft foundation for traffic signal posts. The conventional foundation was also modeled and produced a 0.528 mm deflection. Whereas some of the best performing root foundation models achieved 0.23 mm. By comparing the resulting deflection of the conventional foundation model to the deflection of the root foundation models, the best performing root foundation models were constructed from steel and physically tested. The root foundation models were then calibrated to predict the performance of root foundation models. Results show that the RFSs with half the length and diameter of conventional deep foundations (for traffic signal poles) were able to provide more than four times the lateral load capacity compared to the control sections. This shows that RFSs have excellent potential to replace the conventional deep foundation alternatives used to support traffic signal posts. The economic and environmental impacts due to the root-inspired foundation systems could be tremendous owing to the reductions in the material requirements
    corecore