16 research outputs found

    CLIFT: a Cross-Layer InFormation Tool for Latency Analysis Based on Real Satellite Physical Traces

    Get PDF
    New mobile technology generations succeed in achieving high goodput, which results in diverse applications profiles exploiting various resource providers (Wifi, 4G, 5G, . . . ). Badly set parameters on one of the network component may severely impact on the transmission delay and reduce the quality of experience. The cross layer impact should be investigated on to assess the origin of latency. To run cross-layer (from physical layer to application layers) simulations, two approaches are possible: (1) use physical layer models that may not be exhaustive enough to drive consistent analysis or (2) use real physical traces. Driving realistic measurements by using real physical (MAC/PHY) traces inside network simulations is a complex task. We propose to cope with this problem by introducing Cross Layer InFormation Tool (CLIFT), that translates real physical events from a given trace in order to be used inside a network simulator such as ns-2. Our proposal enables to accurately perform analysis of the impact of link layer reliability schemes (obtained by the use of real physical traces) on transport layer performance and on the latency. Such approach enables a better understanding of the interactions between the layers. The main objective of CLIFT is to let us study the protocols introduced at each layer of the OSI model and study their interaction. We detail the internal mechanisms and the benefits of this software with a running example on 4G satellite communications scenarios

    ResTP: A Configurable and Adaptable Multipath Transport Protocol for Future Internet Resilience

    Get PDF
    Motivated by the shortcomings of common transport protocols, e.g., TCP, UDP, and MPTCP, in modern networking and the belief that a general-purpose transport-layer protocol, which can operate efficiently over diverse network environments while being able to provide desired services for various application types, we design a new transport protocol, ResTP. The rapid advancement of networking technology and use paradigms is continually supporting new applications. The configurable and adaptable multipath-capable ResTP is not only distinct from the standard protocols by its flexibility in satisfying the requirements of different traffic classes considering the characteristics of the underlying networks, but by its emphasis on providing resilience. Resilience is an essential property that is unfortunately missing in the current Internet. In this dissertation, we present the design of ResTP, including the services that it supports and the set of algorithms that implement each service. We also discuss our modular implementation of ResTP in the open-source network simulator ns-3. Finally, the protocol is simulated under various network scenarios, and the results are analyzed in comparison with conventional protocols such as TCP, UDP, and MPTCP to demonstrate that ResTP is a promising new transport-layer protocol providing resilience in the Future Internet (FI)

    Analysis of TCP performance for LTE-5G Millimeter Wave Dual Connectivity

    Get PDF
    The goal of this work is the analysis of the performance of the transport control protocol (TCP) in a Dual connectivity (DC) system, where both LTE and 5G millimeter wave (mmWave) were used in the radio access network, while a single user travels across the scenario. Since the user is moving, the interaction between the mmWave base stations (BSs) must be very efficient to avoid congestion events. This makes the analysis of DC very important. Simulation models based on open-source software frameworks were used to evaluate the performance of Dual connectivity for a 5G non-standalone (NSA) solution, where all the 5G base station traffic goes through the LTE base station. The scenarios proposed were defined in terms of non-line-of-sight/line-of-sight (NLOS/LOS) scenario, medium/high traffic, which are used to evaluate different TCP congestion control algorithms. The performance was then evaluated in terms of goodput, packet delivery ratio, standard deviation of bytes in-flight, and round-trip time. Simulation results showed that the number of bytes in-flight grows with high rates and large latencies caused by inter-BS communication. The mmWave medium is very sensitive to channel conditions specially in the middle point between mmWave BSs causing ping-pong effect during a handover (HO). At the beginning of the simulation some nodes overflow due to the aggressive slow start mechanisms, which turn to be very problematic for high traffic rates. In that sense, TCP Cubic proves to be a much reliable congestion control algorithm since it implements a hybrid slow start method

    Part 1: acceptance test and administration of a farm of servers. Part 2: improving TCP performance in underwater wireless sensor networks

    Get PDF
    Dissertação de mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2017Abstract 1 During the last decades, companies and organizations have focused on how to provide to the end-users or clients with web services or applications to make them more closer and involved to the activity. Therefore, many enterprises through their direction of the IT service, propose varieties of applications that allow to the stakeholders to perform what they need. The aim of this report is to present what the application integration job is and to report the missions that I have been able to carry out such as application integration, application qualification, and acceptance tests. This represents in total: - 19 qualified applications, - 33 administrated serversResumo 1 Ao longo das últimas décadas, as empresas e as organizações concentraram-se na forma de fornecer aos usuários finais ou clientes, serviços Web ou aplicativos para torná-los mais próximos e envolvidos na actividade. Portanto, muitas empresas através da sua direcção do serviço de Tecnólogia da Informação TI, propõem variedades de aplicativos que permitem às partes interessadas realizar o que necessitam. O objectivo deste relatório é apresentar o que é o trabalho de integração de aplicativos e as missões que fui capaz de executar, como a integração de aplicativos, a qualificação de aplicativos e testes de aceitação. Isto representa no total: - 19 aplicações qualificadas, - 33 servidores administradosAbstract 2 Underwater wireless sensor networks (UWSNs) are becoming popular due to their important role in different applications, such as offshore search and underwater monitoring. However, the data transmission in this underwater environment is impacted by various aspects such as bandwidth usage limitation, surrounding noise and large acoustic propagation delays. Therefore, communication itself is an outstanding challenge. The well-known traditional transmission control protocol (TCP), one of the most used transport protocol on the internet, is not suitable to enable this technology. Even though TCP variants for the wireless network are not foolproof in an underwater environment, their use could probably be more difficult in such a multi-hop communication system. We have chosen Newreno for our study. This variant is a modern implementation that includes the four congestion control algorithms. These algorithms have proved to be effective when it comes to terrestrial networks which could be a basis for our study. In addition, Newreno is known for its algorithm of recovery of several segments lost within the same sending window. In this dissertation, we have conducted a general study of UWSN technology and examined methods to improve TCP performance in a multi-hop UWSN. And then, we propose Underwater-Newreno (U-Newreno) our enhanced version of Newreno to improve TCP performance in UWSN. U-Newreno consists of two major modifications: controlling the maximum size of the congestion window and the adaptation of the round trip time (RTT) timeout. The results of simulations carried out with the Aquasim simulator show improvements of performances in terms of gain of: packets delivery Retransmission ratio of packets delivery.Resumo 2 As redes de sensores sem fio subaquáticos (Underwater Wireless Sensor Networks- UWSN) estão-se a tornar cada vez mais populares devido à sua importância em diferentes aplicações, como a pesquisa offshore e monitoramento subaquático. No entanto, a transmissão de dados neste ambiente subaquático sofre devido a vários factores, como a limitação do uso da largura de banda, o ruído envolvente e grandes atrasos de propagação acústica. Portanto, a comunicação é um desafio problemático. O familiar transmission control protocol (TCP) tradicional, um dos protocolos de transporte mais utilizados na internet, não é adequado para habilitar esta tecnologia. Mesmo que as variantes TCP para a rede sem fio não sejam infalíveis num ambiente subaquático, o seu uso provavelmente pode ser mais difícil num sistema de comunicação de múltiplos saltos. Nós escolhemos o Newreno para o nosso estudo. Esta variante é uma implementação moderna que inclui os quatro algoritmos de controle de congestionamento. Estes algoritmos demonstraram a sua eficácia em redes terrestres que poderiam ser uma base para o nosso estudo. Além disso, Newreno é conhecido pelo seu algoritmo de recuperação de vários segmentos perdidos dentro da mesma janela de envio. Nesta dissertação, realizamos um estudo geral da tecnologia UWSN e examinamos métodos para melhorar o desempenho do TCP num UWSN de vários saltos. E então, propomos a U-Newreno (Underwater-Newreno), a nossa versão melhorada do Newreno para melhorar o desempenho do TCP no UWSN. O U-Newreno consiste em duas modificações principais: controlar o tamanho máximo da janela de congestionamento e a adaptação do tempo limite “Round Trip Time”(RTT). Os resultados das simulações realizadas com o simulador Aquasim mostram melhorias nos desempenhos em termos de ganho de: • entrega de pacotes • Taxa de retransmissão da entrega de pacotes

    Moving toward the intra-protocol de-ossification of TCP in mobile networks: Start-up and mobility

    Get PDF
    182 p.El uso de las redes móviles de banda ancha ha aumentado significativamente los últimos años y se espera un crecimiento aún mayor con la inclusión de las futuras capacidades 5G. 5G proporcionará unas velocidades de transmisión y reducidos retardos nunca antes vistos. Sin embargo, la posibilidad de alcanzar las mencionadas cuotas está limitada por la gestión y rendimiento de los protocolos de transporte. A este respecto, TCP sigue siendo el protocolo de transporte imperante y sus diferentes algoritmos de control de congestión (CCA) los responsables finales del rendimiento obtenido. Mientras que originalmente los distintos CCAs han sido implementados para hacer frente a diferentes casos de uso en redes fijas, ninguno de los CCAs ha sido diseñado para poder gestionar la variabilidad de throughput y retardos de diferentes condiciones de red redes móviles de una manera fácilmente implantable. Dado que el análisis de TCP sobre redes móviles es complejo debido a los múltiples factores de impacto, nuestro trabajo se centra en dos casos de uso generalizados que resultan significativos en cuanto a afección del rendimiento: movimiento de los usuarios como representación de la característica principal de las redes móviles frente a las redes fijas y el rendimiento de la fase de Start-up de TCP debido a la presencia mayoritaria de flujos cortos en Internet. Diferentes trabajos han sugerido la importancia de una mayor flexibilidad en la capa de transporte, creando servicios de transporte sobre TCP o UDP. Sin embargo, estas propuestas han encontrado limitaciones relativas a las dependencias arquitecturales de los protocolos utilizados como sustrato (p.ej. imposibilidad de cambiar la configuración de la capa de transporte una vez la transmisión a comenzado), experimentando una capa de transporte "osificada". Esta tesis surge como respuesta a fin de abordar la citada limitación y demostrando que existen posibilidades de mejora dentro de la familia de TCP (intra-protocolar), proponiendo un marco para solventar parcialmente la restricción a través de la selección dinámica del CCA más apropiado. Para ello, se evalúan y seleccionan los mayores puntos de impacto en el rendimiento de los casos de uso seleccionados en despliegues de red 4G y en despliegues de baja latencia que emulan las potenciales latencias en las futuras capacidades 5G. Estos puntos de impacto sirven como heurísticas para decidir el CCA más apropiado en el propuesto marco. Por último, se valida la propuesta en entornos de movilidad con dos posibilidades de selección: al comienzo de la transmisión (limitada flexibilidad de la capa de transporte) y dinámicamente durante la transmisión (con una capa de transporte flexible). Se concluye que la propuesta puede acarrear importantes mejoras de rendimiento al seleccionar el CCA más apropiado teniendo en cuenta la situación de red y los requerimientos de la capa de aplicación

    Optimization and Performance Analysis of High Speed Mobile Access Networks

    Get PDF
    The end-to-end performance evaluation of high speed broadband mobile access networks is the main focus of this work. Novel transport network adaptive flow control and enhanced congestion control algorithms are proposed, implemented, tested and validated using a comprehensive High speed packet Access (HSPA) system simulator. The simulation analysis confirms that the aforementioned algorithms are able to provide reliable and guaranteed services for both network operators and end users cost-effectively. Further, two novel analytical models one for congestion control and the other for the combined flow control and congestion control which are based on Markov chains are designed and developed to perform the aforementioned analysis efficiently compared to time consuming detailed system simulations. In addition, the effects of the Long Term Evolution (LTE) transport network (S1and X2 interfaces) on the end user performance are investigated and analysed by introducing a novel comprehensive MAC scheduling scheme and a novel transport service differentiation model

    Performance of 5G Small Cells using Flexible TDD

    Get PDF

    Congestion mitigation in LTE base stations using radio resource allocation techniques with TCP end to end transport

    Get PDF
    As of 2019, Long Term Evolution (LTE) is the chosen standard for most mobile and fixed wireless data communication. The next generation of standards known as 5G will encompass the Internet of Things (IoT) which will add more wireless devices to the network. Due to an exponential increase in the number of wireless subscriptions, in the next few years there is also an expected exponential increase in data traffic. Most of these devices will use Transmission Control Protocol (TCP) which is a type of network protocol for delivering internet data to users. Due to its reliability in delivering data payload to users and congestion management, TCP is the most common type of network protocol used. However, the ability for TCP to combat network congestion has certain limitations especially in a wireless network. This is due to wireless networks not being as reliable as fixed line networks for data delivery because of the use of last mile radio interface. LTE uses various error correction techniques for reliable data delivery over the air-interface. These cause other issues such as excessive latency and queuing in the base station leading to degradation in throughput for users and congestion in the network. Traditional methods of dealing with congestion such as tail-drop can be inefficient and cumbersome. Therefore, adequate congestion mitigation mechanisms are required. The LTE standard uses a technique to pre-empt network congestion by a mechanism known as Discard Timer. Additionally, there are other algorithms such as Random Early Detection (RED) that also are used for network congestion mitigation. However, these mechanisms rely on configured parameters and only work well within certain regions of operation. If the parameters are not set correctly then the TCP links can experience congestion collapse. In this thesis, the limitations of using existing LTE congestion mitigation mechanisms such as Discard Timer and RED have been explored. A different mechanism to analyse the effects of using control theory for congestion mitigation has been developed. Finally, congestion mitigation in LTE networks has been addresses using radio resource allocation techniques with non-cooperative game theory being an underlying mathematical framework. In doing so, two key end-to-end performance measurements considered for measuring congestion for the game theoretic models were identified which were the total end-to-end delay and the overall throughput of each individual TCP link. An end to end wireless simulator model with the radio access network using LTE and a TCP based backbone to the end server was developed using MATLAB. This simulator was used as a baseline for testing each of the congestion mitigation mechanisms. This thesis also provides a comparison and performance evaluation between the congestion mitigation models developed using existing techniques (such as Discard Timer and RED), control theory and game theory. As of 2019, Long Term Evolution (LTE) is the chosen standard for most mobile and fixed wireless data communication. The next generation of standards known as 5G will encompass the Internet of Things (IoT) which will add more wireless devices to the network. Due to an exponential increase in the number of wireless subscriptions, in the next few years there is also an expected exponential increase in data traffic. Most of these devices will use Transmission Control Protocol (TCP) which is a type of network protocol for delivering internet data to users. Due to its reliability in delivering data payload to users and congestion management, TCP is the most common type of network protocol used. However, the ability for TCP to combat network congestion has certain limitations especially in a wireless network. This is due to wireless networks not being as reliable as fixed line networks for data delivery because of the use of last mile radio interface. LTE uses various error correction techniques for reliable data delivery over the air-interface. These cause other issues such as excessive latency and queuing in the base station leading to degradation in throughput for users and congestion in the network. Traditional methods of dealing with congestion such as tail-drop can be inefficient and cumbersome. Therefore, adequate congestion mitigation mechanisms are required. The LTE standard uses a technique to pre-empt network congestion by a mechanism known as Discard Timer. Additionally, there are other algorithms such as Random Early Detection (RED) that also are used for network congestion mitigation. However, these mechanisms rely on configured parameters and only work well within certain regions of operation. If the parameters are not set correctly then the TCP links can experience congestion collapse. In this thesis, the limitations of using existing LTE congestion mitigation mechanisms such as Discard Timer and RED have been explored. A different mechanism to analyse the effects of using control theory for congestion mitigation has been developed. Finally, congestion mitigation in LTE networks has been addresses using radio resource allocation techniques with non-cooperative game theory being an underlying mathematical framework. In doing so, two key end-to-end performance measurements considered for measuring congestion for the game theoretic models were identified which were the total end-to-end delay and the overall throughput of each individual TCP link. An end to end wireless simulator model with the radio access network using LTE and a TCP based backbone to the end server was developed using MATLAB. This simulator was used as a baseline for testing each of the congestion mitigation mechanisms. This thesis also provides a comparison and performance evaluation between the congestion mitigation models developed using existing techniques (such as Discard Timer and RED), control theory and game theory

    Enabling Multipath and Multicast Data Transmission in Legacy and Future Internet

    Get PDF
    The quickly growing community of Internet users is requesting multiple applications and services. At the same time the structure of the network is changing. From the performance point of view, there is a tight interplay between the application and the network design. The network must be constructed to provide an adequate performance of the target application. In this thesis we consider how to improve the quality of users' experience concentrating on two popular and resource-consuming applications: bulk data transfer and real-time video streaming. We share our view on the techniques which enable feasibility and deployability of the network functionality leading to unquestionable performance improvement for the corresponding applications. Modern mobile devices, equipped with several network interfaces, as well as multihomed residential Internet hosts are capable of maintaining multiple simultaneous attachments to the network. We propose to enable simultaneous multipath data transmission in order to increase throughput and speed up such bandwidth-demanding applications as, for example, file download. We design an extension for Host Identity Protocol (mHIP), and propose a multipath data scheduling solution on a wedge layer between IP and transport, which effectively distributes packets from a TCP connection over available paths. We support our protocol with a congestion control scheme and prove its ability to compete in a friendly manner against the legacy network protocols. Moreover, applying game-theoretic analytical modelling we investigate how the multihomed HIP multipath-enabled hosts coexist in the shared network. The number of real-time applications grows quickly. Efficient and reliable transport of multimedia content is a critical issue of today's IP network design. In this thesis we solve scalability issues of the multicast dissemination trees controlled by the hybrid error correction. We propose a scalable multicast architecture for potentially large overlay networks. Our techniques address suboptimality of the adaptive hybrid error correction (AHEC) scheme in the multicast scenarios. A hierarchical multi-stage multicast tree topology is constructed in order to improve the performance of AHEC and guarantee QoS for the multicast clients. We choose an evolutionary networking approach that has the potential to lower the required resources for multimedia applications by utilizing the error-correction domain separation paradigm in combination with selective insertion of the supplementary data from parallel networks, when the corresponding content is available. Clearly both multipath data transmission and multicast content dissemination are the future Internet trends. We study multiple problems related to the deployment of these methods.Internetin nopeasti kasvava käyttäjäkunta vaatii verkolta yhä enemmän sovelluksia ja palveluita. Samaan aikaan verkon rakenne muuttuu. Suorituskyvyn näkökulmasta on olemassa selvä vuorovaikutussovellusten ja verkon suunnittelun välillä. Verkko on rakennettava siten, että se pystyy takaamaan riittävän suorituskyvyn halutuille palveluille. Tässä väitöskirjassa pohditaan, miten verkon käyttökokemusta voidaan parantaa keskittyen kahteen suosittuun ja resursseja vaativaan sovellukseen: tiedonsiirtoon ja reaaliaikaiseen videon suoratoistoon. Esitämme näkemyksemme tekniikoista, jotka mahdollistavat tarvittavien verkkotoiminnallisuuksien helpon toteuttavuuden sekä kiistatta parantavat sovelluksien suorityskykyä. Nykyaikaiset mobiililaitteet monine verkkoyhteyksineen, kuten myös kotitietokoneet, pystyvät ylläpitämään monta internet-yhteyttä samanaikaisesti. Siksi ehdotamme monikanavaisen tiedonsiirron käyttöä suorituskyvyn parantamiseksi ja etenkin vaativien verkkosovelluksien, kuten tiedostonsiirron, nopeuttamiseksi. Tässä väitöskirjassa suunnitellaan Host Identity Protocol (mHIP) -laajennus, sekä esitetään tiedonsiirron vuorotteluratkaisu, joka hajauttaa TCP-yhteyden tiedonsiirtopaketit käytettävissä oleville kanaville. Protokollamme tueksi luomme myös ruuhkautumishallinta-algoritmin ja näytämme sen pystyvän toimimaan yhteen nykyisien verkkoprotokollien kanssa. Tämän lisäksi tutkimme peliteoreettista mallinnusta käyttäen, miten monikanavaiset HIP-verkkopäätteet toimivat muiden kanssa jaetuissa verkoissa. Reaaliaikaisten sovellusten määrä kasvaa nopeasti. Tehokas ja luotettava multimediasisällön siirto on olennainen vaatimus nykypäivän IP-verkoissa. Tässä työssä ratkaistaan monilähetyksen (multicast) jakelustruktuurin skaalautuvuuteen liittyviä ongelmia. Ehdotamme skaalautuvaa monilähetysarkkitehtuuria suurille peiteverkoille. Ratkaisumme puuttuu adaptiivisen virhekorjauksen (Adaptive Hybrid Error Correction, AHEC) alioptimaalisuuteen monilähetystilanteissa. Luomme hierarkisen monivaiheisen monilähetyspuutopologian parantaaksemme AHECin suorituskykyä, sekä taataksemme monilähetysasiakkaiden palvelun laadun. Valitsimme evoluutiomaisen lähestymistavan, jolla on potentiaalia keventää multimediasovelluksien verkkoresurssivaatimuksia erottamalla virhekorjauksen omaksi verkkotunnuksekseen, sekä käyttämällä valikoivaa täydentävää tiedonlisäystä rinnakkaisverkoista vastaavan sisällön ollessa saatavilla. Sekä monikanava- että monilähetystiedonsiirto ovat selvästi osa internetin kehityssuuntaa. Tässä väitöskirjassa tutkimme monia ongelmia näiden tekniikoiden käyttöönottoon liittyen

    Techniques for End-to-End Tcp Performance Enhancement Over Wireless Networks

    Get PDF
    Today’s wireless network complexity and the new applications from various user devices call for an in-depth understanding of the mutual performance impact of networks and applications. It includes understanding of the application traffic and network layer protocols to enable end-to-end application performance enhancements over wireless networks. Although Transport Control Protocol (TCP) behavior over wireless networks is well known, it remains as one of the main drivers which may significantly impact the user experience through application performance as well as the network resource utilization, since more than 90% of the internet traffic uses TCP in both wireless and wire-line networks. In this dissertation, we employ application traffic measurement and packet analysis over a commercial Long Term Evolution (LTE) network combined with an in-depth LTE protocol simulation to identify three critical problems that may negatively affect the application performance and wireless network resource utilization: (i) impact of the wireless MAC protocol on the TCP throughput performance, (ii) impact of applications on network resource utilization, and (iii) impact of TCP on throughput performance over wireless networks. We further propose four novel mechanisms to improve the end-to-end application and wireless system performance: (i) an enhanced LTE uplink resource allocation mechanism to reduce network delay and help prevent a TCP timeout, (ii) a new TCP snooping mechanism, which according to our experiments, can save about 20% of system resources by preventing unnecessary video packet transmission through the air interface, and (iii) two Split-TCP protocols: an Enhanced Split-TCP (ES-TCP) and an Advanced Split-TCP (AS-TCP), which significantly improve the application throughput without breaking the end-to-end TCP semantics. Experimental results show that the proposed ES-TCP and AS-TCP protocols can boost the TCP throughput by more than 60% in average, when exercised over a 4G LTE network. Furthermore, the TCP throughput performance improvement may be even superior to 200%, depending on network and usage conditions. We expect that these proposed Split-TCP protocol enhancements, together with the new uplink resource allocation enhancement and the new TCP snooping mechanism may provide even greater performance gains when more advanced radio technologies, such as 5G, are deployed. Thanks to their superior resource utilization efficiency, such advanced radio technologies will put to greater use the techniques and protocol enhancements disclosed through this dissertation
    corecore