4,543 research outputs found

    Colorectal Cancer Through Simulation and Experiment

    Get PDF
    Colorectal cancer has continued to generate a huge amount of research interest over several decades, forming a canonical example of tumourigenesis since its use in Fearon and Vogelstein’s linear model of genetic mutation. Over time, the field has witnessed a transition from solely experimental work to the inclusion of mathematical biology and computer-based modelling. The fusion of these disciplines has the potential to provide valuable insights into oncologic processes, but also presents the challenge of uniting many diverse perspectives. Furthermore, the cancer cell phenotype defined by the ‘Hallmarks of Cancer’ has been extended in recent times and provides an excellent basis for future research. We present a timely summary of the literature relating to colorectal cancer, addressing the traditional experimental findings, summarising the key mathematical and computational approaches, and emphasising the role of the Hallmarks in current and future developments. We conclude with a discussion of interdisciplinary work, outlining areas of experimental interest which would benefit from the insight that mathematical and computational modelling can provide

    Systems analysis of drug-induced receptor tyrosine kinase reprogramming following targeted mono- and combination anti-cancer therapy

    Get PDF
    The receptor tyrosine kinases (RTKs) are key drivers of cancer progression and targets for drug therapy. A major challenge in anti-RTK treatment is the dependence of drug effectiveness on co-expression of multiple RTKs which defines resistance to single drug therapy. Reprogramming of the RTK network leading to alteration in RTK co-expression in response to drug intervention is a dynamic mechanism of acquired resistance to single drug therapy in many cancers. One route to overcome this resistance is combination therapy. We describe the results of a joint in silico, in vitro, and in vivo investigations on the efficacy of trastuzumab, pertuzumab and their combination to target the HER2 receptors. Computational modelling revealed that these two drugs alone and in combination differentially suppressed RTK network activation depending on RTK co-expression. Analyses of mRNA expression in SKOV3 ovarian tumour xenograft showed up-regulation of HER3 following treatment. Considering this in a computational model revealed that HER3 up-regulation reprograms RTK kinetics from HER2 homodimerisation to HER3/HER2 heterodimerisation. The results showed synergy of the trastuzumab and pertuzumab combination treatment of the HER2 overexpressing tumour can be due to an independence of the combination effect on HER3/HER2 composition when it changes due to drug-induced RTK reprogramming

    Cross-Talk Categorisations in Data-Driven Models of Signalling Networks: A System-Level View

    Get PDF
    Data-driven models of signalling networks are becoming increasingly important in systems biology in order to reflect the dynamic patterns of signalling activities in a context-specific manner. State-of-the-art approaches for categorising and detecting signalling cross-talks may not be suitable for such models since they rely on static topologies of cell signalling networks and prior biological knowledge. In this chapter, we review state-of-the-art approaches that categorise all possible cross-talks in signalling networks and propose a novel categorisation specific to data-driven network models. Considering such models as undirected networks, we propose two categories of signalling cross-talks between any two given signalling pathways. In a Type-I cross-talk, a signalling link {gi ,gj } connects two signalling pathways, where gi and gj are signalling nodes that belong to two distinct pathways. In a Type-II cross-talk, two signalling links {gi ,gj } and {gj ,gk } meet at the intersection of two signalling pathways at a shared signalling node gj . We compared our categorisation approach with others and found that all the types of cross-talks defined by those approaches can be mapped to Type-I and Type-II cross-talks when underlying signalling activities are considered as non-causal relationships. Next, we provided a simple but intuitive algorithm called XDaMoSiN (cross-talks in data-driven models of signalling networks) to detect both Type-I and Type-II cross-talks between any two given signalling pathways in a data-driven network model. By detecting cross-talks in such network models, our approach can be used to analyse and decipher latent mechanisms of various cell phenotypes, such as cancer or acquired drug resistance, that may evolve due to the highly adaptable and dynamic nature of signal transduction networks

    Machine learning and data mining frameworks for predicting drug response in cancer:An overview and a novel <i>in silico</i> screening process based on association rule mining

    Get PDF

    Knowledge Management Approaches for predicting Biomarker and Assessing its Impact on Clinical Trials

    Get PDF
    The recent success of companion diagnostics along with the increasing regulatory pressure for better identification of the target population has created an unprecedented incentive for the drug discovery companies to invest into novel strategies for stratified biomarker discovery. Catching with this trend, trials with stratified biomarker in drug development have quadrupled in the last decade but represent a small part of all Interventional trials reflecting multiple co-developmental challenges of therapeutic compounds and companion diagnostics. To overcome the challenge, varied knowledge management and system biology approaches are adopted in the clinics to analyze/interpret an ever increasing collection of OMICS data. By semi-automatic screening of more than 150,000 trials, we filtered trials with stratified biomarker to analyse their therapeutic focus, major drivers and elucidated the impact of stratified biomarker programs on trial duration and completion. The analysis clearly shows that cancer is the major focus for trials with stratified biomarker. But targeted therapies in cancer require more accurate stratification of patient population. This can be augmented by a fresh approach of selecting a new class of biomolecules i.e. miRNA as candidate stratification biomarker. miRNA plays an important role in tumorgenesis in regulating expression of oncogenes and tumor suppressors; thus affecting cell proliferation, differentiation, apoptosis, invasion, angiogenesis. miRNAs are potential biomarkers in different cancer. However, the relationship between response of cancer patients towards targeted therapy and resulting modifications of the miRNA transcriptome in pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have created an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. We present a novel SMARTmiR algorithm to predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer. The application of an optimised and fully automated version of the algorithm has the potential to be used as clinical decision support tool. Moreover this research will also provide a comprehensive and valuable knowledge map demonstrating functional bimolecular interactions in colorectal cancer to scientific community. This research also detected seven miRNA i.e. hsa-miR-145, has-miR-27a, has- miR-155, hsa-miR-182, hsa-miR-15a, hsa-miR-96 and hsa-miR-106a as top stratified biomarker candidate for cetuximab therapy in CRC which were not reported previously. Finally a prospective plan on future scenario of biomarker research in cancer drug development has been drawn focusing to reduce the risk of most expensive phase III drug failures

    Modelling of biological systems using multidimensional population balances

    Get PDF
    Biological systems are intrinsically heterogeneous and, consequently, their mathematical descriptions should account for this heterogeneity as it often influences the dynamic behaviour of the individual cells. For example, in the cell cycle dependent production ofproteins, it is necessary to account for the distribution of the individual cells with respect to their position in the cell cycle as this has a strong influence on protein production. A second notable example is the formation of cancerous cells. In this case, the failure of regulatory mechanisms results in the transition of somatic cells to their cancerous state. Therefore, in developing the corresponding mathematical model, it is necessary to consider both the different states of the cells as well as their regulation. In this regard, the population balance equation is the ideal mathematical framework to capture cell population heterogeneity as it elegantly takes into account the distribution of cell populations with respect to their intracellular state together with the phenomena of cell birth, division, differentiation and recombination. Recent developments in solution algorithms together with the exponential increase in computational abilities now permit the efficient solution of one-dimensional population balance models which attribute the heterogeneity of cell populations to differences in the age or mass of individual cells. The inherent complexity of biological systems implies that the differentiation of cells based on a single characteristic alone may not be sufficient to capture the underlying biological phenomena. Therefore, current research is focussing on the development of multi-dimensional population balances that consider the differentiation of cells based on multiple characteristics, most notably, the state of cells with respect to key intracellular metabolites. However, conventional numerical techniques are inefficient for the solution of the formulated population balance models and this warrants the development of novel, tailor-made algorithms. This thesis presents one such solution algorithm and demonstrates its application to the study of several biological systems. The algorithm developed herein employs a finite-volume technique to convert the partial-differential equation comprising the population balance model into a set of ordinary differential equations. A two-tier technique based on the solution technique for inhomogeneous differential equations is then developed to solve the system of ordinary differential equations. This approach has two main advantages: (a) the decomposition technique considerably reduces the stiffness of the system of equations enabling more efficient solution, and (b) semianalytical solutions for the integrals employed in the modelling of cell division and differentiation can be obtained further reducing computation times. Further improvements in solution efficiency are obtained by the formulation of a two-level discretisation algorithm. In this approach, processes such as cell growth which are more sensitive to the discretisation are solved using a fine grid whereas less sensitive processes such as cell' division - which are usually more computationally expensive - are solved using a coarse grid at a higher level. Thus, further improvements are obtained in the efficiency of the technique. The solution algorithm is applied to various multi-dimensional population balance models of biological systems. The technique is first demonstrated on models of oscillatory dynamics in yeast glycolysis, cell-cycle related oscillations in eukaryotes, and circadian oscillations in crayfish. A model of cell division and proliferation control in eukaryotes is an example of a second class of problems where extracellular phenomena influence the behaviour of cells. As a third case for demonstration, a hybrid model of biopolymer accumulation in bacteria is formulated. In this case, cybernetic modelling principles are used to account for intracellular competitions while the population balance framework takes into consideration the heterogeneity of the cell population. Another important aspect in the formulation ofmulti-dimensional population balances is the development of the intracellular models themselves. While research in the biological sciences is permitting the formulation of detailed dynamic models of various bioprocesses, the accurate estimation of the kinetic parameters in these models can be difficult due to the unavailability of sufficient experimental data. This can result in considerable parametric uncertainty as is demonstrated on a simple cybernetic' model of biopolymer accumulation in bacteria. However, it is shown that, via the use of systems engineering tools, experiments can be designed that permit the accurate estimation of all model parameters even when measurements pertaining to all modelled quantities are unavailable.Imperial Users onl

    Patient-specific Boolean models of signalling networks guide personalised treatments

    Get PDF
    Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell-line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell-line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.This work has been partially supported by the European Commission under the PrECISE project (H2020-PHC-668858), the INFORE project (H2020-ICT-825070) and the PerMedCoE (H2020-ICT-951773)Peer Reviewed"Article signat per 12 autors/es: Arnau Montagud, Jonas Béal, Luis Tobalina, Pauline Traynard, Vigneshwari Subramanian, Bence Szalai, Róbert Alföldi, László Puskás, Alfonso Valencia, Emmanuel Barillot, Julio Saez-Rodriguez, Laurence Calzone"Postprint (author's final draft

    Quantitative and systems pathology for therapeutic response prediction

    Get PDF
    The measurement of tissue biomarkers for therapeutic response prediction in cancer patients has become standard pathological practice, but only for a very limited number of targets. This is in spite of massive intellectual and financial investment in molecular pathology for translational cancer research. A re-evaluation of current approaches, and the testing of new ones, is required in order to meet the challenges of predicting responses to existing and novel therapeutics, and individualising therapy.Herein I critique the current state of tissue biomarker analysis and quantification in cancer pathology and the reasons why so few novel biomarkers have entered the clinic. In particular, we examine the central role of signalling pathway biology in sensitivity and resistance to targeted therapy. I discuss how accurate quantification, and the ability to simulate biological responses over time and space, may lead to more accurate prediction of therapeutic response. I propose that different mathematical techniques used in the nascent field of systems biology (ordinary differential equation-based, S-systems, and Bayesian approaches) may provide promising new avenues to improve prediction in clinical and pathological practice. I also discuss the challenges and opportunities for quantification in pathological research and practice.I have examined the role of cellular signalling pathways in therapeutic sensitivity and resistance in three different ways. Firstly, I have taken a hypothesis-driven and reductionist approach and shown that decreased Sprouty 2, a feedback inhibitor of MAPK and PI3K signalling, is associated with trastuzumab-resistance in vitro and in a cohort of breast cancer patients treated with trastuzumab. Secondly, I have characterised the activation state of ten growth and survival pathways across different histological subtypes of ovarian cancer using quantitative fluorescence microscopy. I have shown that unsupervised clustering of phosphoprotein expression profiles results in new subgroups with distinct biological properties (in terms of proliferation and apoptosis), and which predict therapeutic response to chemotherapy. Thirdly, I have developed a new mathematical model of PI3K signalling, parameterised using quantitative phosphoprotein expression data from cancer cell lines using reverse-phase protein microarrays, and shown that quantitative PTEN protein expression is the key determinant of resistance to anti-HER2 therapy in silico. Furthermore, the quantitative measurement of PTEN is more predictive of response than other pathway components taken in isolation and when tested by multivariate analysis in a cohort of breast cancers treated with trastuzumab. For the first time, a systems biology approach has successfully been used to stratify patients for personalised therapy in cancer, and is further compelling evidence that PTEN, appropriately measured in the clinical setting, refines clinical decision-making in patients treated with anti-HER2 therapies

    Can Systems Biology Advance Clinical Precision Oncology?

    Get PDF
    Precision oncology is perceived as a way forward to treat individual cancer patients. However, knowing particular cancer mutations is not enough for optimal therapeutic treatment, because cancer genotype-phenotype relationships are nonlinear and dynamic. Systems biology studies the biological processes at the systems’ level, using an array of techniques, ranging from statistical methods to network reconstruction and analysis, to mathematical modeling. Its goal is to reconstruct the complex and often counterintuitive dynamic behavior of biological systems and quantitatively predict their responses to environmental perturbations. In this paper, we review the impact of systems biology on precision oncology. We show examples of how the analysis of signal transduction networks allows to dissect resistance to targeted therapies and inform the choice of combinations of targeted drugs based on tumor molecular alterations. Patient-specific biomarkers based on dynamical models of signaling networks can have a greater prognostic value than conventional biomarkers. These examples support systems biology models as valuable tools to advance clinical and translational oncological research
    corecore