1,853 research outputs found

    Sustainable and agile manufacturing outsourcing partner selection: a literature review

    Get PDF
    [EN] Outsourcing to third party to manage non-core activities helps the firm to focus on core activities. Manufacturing firms are outsourcing product development, manufacturing, logistics, customer care etc. to enhance production capacity and flexibility, and to reduce operational costs, which in turn can improve profitability and competitive advantage of the enterprise. Sustainability in operations and supply chain is gaining momentum due to increased global environmental concern, pressures from consumers and communities, and enforced regulations. Volatile and uncertain business environment necessitates the adoption of agility and flexibility to effectively manage manufacturing and supply chain. Globalisation has made the market very competitive and hence manufacturing firms are adopting manufacturing outsourcing to third parties. Selecting a sustainable and agile manufacturing outsourcing partner (MPS) is crucial as it will improve sustainability, efficiency, and effectiveness of the supply chain and competitive advantage to the firm. Detailed literature review on sustainable and agile manufacturing outsourcing partner selection has been carried out from EBSCO data base and Goggle scholar. Selection criteria used are classified into agile, operational, economic, environmental and social. The techniques use are mostly multi criteria decision making methods (MCDM) while few have adopted programming techniques. Discussion, implication and the scope of future work is also provided.Akhtar, M. (2022). Sustainable and agile manufacturing outsourcing partner selection: a literature review. International Journal of Production Management and Engineering. 10(2):143-158. https://doi.org/10.4995/ijpme.2022.1680714315810

    A Review of Supply Chain Data Mining Publications

    Get PDF
    The use of data mining in supply chains is growing, and covers almost all aspects of supply chain management. A framework of supply chain analytics is used to classify data mining publications reported in supply chain management academic literature. Scholarly articles were identified using SCOPUS and EBSCO Business search engines. Articles were classified by supply chain function. Additional papers reflecting technology, to include RFID use and text analysis were separately reviewed. The paper concludes with discussion of potential research issues and outlook for future development

    Strategic supplier performance evaluation::a case-based action research of a UK manufacturing organisation

    Get PDF
    The main aim of this research is to demonstrate strategic supplier performance evaluation of a UK-based manufacturing organisation using an integrated analytical framework. Developing long term relationship with strategic suppliers is common in today׳s industry. However, monitoring suppliers׳ performance all through the contractual period is important in order to ensure overall supply chain performance. Therefore, client organisations need to measure suppliers׳ performance dynamically and inform them on improvement measures. Although there are many studies introducing innovative supplier performance evaluation frameworks and empirical researches on identifying criteria for supplier evaluation, little has been reported on detailed application of strategic supplier performance evaluation and its implication on overall performance of organisation. Additionally, majority of the prior studies emphasise on lagging factors (quality, delivery schedule and value/cost) for supplier selection and evaluation. This research proposes both leading (organisational practices, risk management, environmental and social practices) and lagging factors for supplier evaluation and demonstrates a systematic method for identifying those factors with the involvement of relevant stakeholders and process mapping. The contribution of this article is a real-life case-based action research utilising an integrated analytical model that combines quality function deployment and the analytic hierarchy process method for suppliers׳ performance evaluation. The effectiveness of the method has been demonstrated through number of validations (e.g. focus group, business results, and statistical analysis). Additionally, the study reveals that enhanced supplier performance results positive impact on operational and business performance of client organisation

    Enablers for Competitiveness of Indian Manufacturing Sector: An ISM-Fuzzy MICMAC Analysis

    Get PDF
    AbstractNow a days global competitive scenario plays a critical role in success of Indian manufacturing sector. The present study argues that innovation can play a very important role in providing this competitiveness of Indian manufacturing sector. The study identifies 11 enablers for promotion of innovation in the Indian manufacturing sector. Based on the rigorous literature review 11 major innovation enablers (IEs) are obtained. The Delphi technique is applied as a potentially valuable tool for the grouping these enablers. The study, analyse the impact of innovation enablers (IEs) to enhance the manufacturing competitiveness and categories into three phases firstly, identification of innovation enablers, secondly, qualitative analysis of enablers and final quantitative analysis of the innovation enablers. The research theme has been categories into three segments, i.e. identifying the enablers from the literature, conduct interviews with directors of different departments and analysis of the manufacturing industries. The study involves 100 manufacturing companies across India and the data is gathered using a 5-point Likert scale. Interpretive Structural Modeling (ISM) has been used to analyse the relationships among these enablers as well as fuzzy MICMAC (Matriced’ Impacts Croise's Multiplication Appliquée a UN Classement) analysis used to find out driving and the dependence power of enablers. To identify the driving and the dependence power of various IEs the final outcomes of ISM are used as input to the fuzzy MICMAC analysis. This analysis serves to identify which (IEs) is performing as the most leading one to raise the competitiveness of manufacturing industries. This study plays a vital role to enhance the competitiveness of manufacturing industries in India

    Products and Services

    Get PDF
    Today’s global economy offers more opportunities, but is also more complex and competitive than ever before. This fact leads to a wide range of research activity in different fields of interest, especially in the so-called high-tech sectors. This book is a result of widespread research and development activity from many researchers worldwide, covering the aspects of development activities in general, as well as various aspects of the practical application of knowledge

    Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model

    Full text link
    [EN] Lack of homogeneity in the product (LHP) appears in some production processes that confer heterogeneity in the characteristics of the products obtained. Supply chains with this issue have to classify the product in different homogeneous subsets, whose quantity is uncertain during the production planning process. This paper proposes a generic framework for reviewing in a unified way the literature about production planning models dealing with LHP uncertainty. This analysis allows the identification of similarities among sectors to transfer solutions between them and gaps existing in the literature for further research. The results of the review show: (1) sectors affected by LHP inherent uncertainty, (2) the inherent LHP uncertainty types modelled, and (3) the approaches for modelling LHP uncertainty most widely employed. Finally, we suggest a conceptual model reflecting the aspects to be considered when modelling the production planning in sectors with LHP in an uncertain environment.This research was initiated within the framework of the project funded by the Ministerio de Economía y Competitividad [Ref. DPI2011-23597] entitled ‘Methods and models for operations planning and order management in supply chains characterised by uncertainty in production due to the lack of product uniformity’ (PLANGES-FHP) already finished. After, the project leading to this application has received funding from the European Union’s research and innovation programme under the H2020 Marie Skłodowska-Curie Actions with the grant agreement No 691249, Project entitled ’Enhancing and implementing Knowledge based ICT solutions within high Riskand Uncertain Conditions for Agriculture Production Systems’ (RUC-APS).Mundi, I.; Alemany Díaz, MDM.; Poler, R.; Fuertes-Miquel, VS. (2019). Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. International Journal of Production Research. 57(15-16):5239-5283. https://doi.org/10.1080/00207543.2019.1566665S523952835715-16Ahumada, O., Rene Villalobos, J., & Nicholas Mason, A. (2012). Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agricultural Systems, 112, 17-26. doi:10.1016/j.agsy.2012.06.002Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014Alarcón, F., Alemany, M. M. E., Lario, F. C., & Oltra, R. F. (2011). La falta de homogeneidad del producto (FHP) en las empresas cerámicas y su impacto en la reasignación del inventario. Boletín de la Sociedad Española de Cerámica y Vidrio, 50(1), 49-58. doi:10.3989/cyv.072011Albornoz, V. M., M. González-Araya, M. C. Gripe, and S. V. Rodrıguez. 2014. “A Mixed Integer Linear Program for Operational Planning in a Meat Packing Plant.” Accessed January 15, 2015. http://www.researchgate.net/profile/Victor_Albornoz/publication/268687089_A_Mixed_Integer_Linear_Program_for_Operational_Planning_in_a_Meat_Packing_Plant/links/547382bf0cf29afed60f55c7.pdf.José Alem, D., & Morabito, R. (2012). Production planning in furniture settings via robust optimization. Computers & Operations Research, 39(2), 139-150. doi:10.1016/j.cor.2011.02.022Alemany, M. M. E., Lario, F.-C., Ortiz, A., & Gómez, F. (2013). Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: An illustration of a ceramic case. Applied Mathematical Modelling, 37(5), 3380-3398. doi:10.1016/j.apm.2012.07.022Alemany, M., Ortiz, A., & Fuertes-Miquel, V. S. (2018). A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company. Computers & Industrial Engineering, 122, 219-234. doi:10.1016/j.cie.2018.05.040Alfalla-Luque, R., Medina-Lopez, C., & Dey, P. K. (2012). Supply chain integration framework using literature review. Production Planning & Control, 24(8-9), 800-817. doi:10.1080/09537287.2012.666870Al-Othman, W. B. E., Lababidi, H. M. S., Alatiqi, I. M., & Al-Shayji, K. (2008). Supply chain optimization of petroleum organization under uncertainty in market demands and prices. European Journal of Operational Research, 189(3), 822-840. doi:10.1016/j.ejor.2006.06.081Al-Shammari, A., & Ba-Shammakh, M. S. (2011). Uncertainty Analysis for Refinery Production Planning. Industrial & Engineering Chemistry Research, 50(11), 7065-7072. doi:10.1021/ie200313rAmaro, A. C. S., & Barbosa-Póvoa, A. P. F. D. (2009). The effect of uncertainty on the optimal closed-loop supply chain planning under different partnerships structure. Computers & Chemical Engineering, 33(12), 2144-2158. doi:10.1016/j.compchemeng.2009.06.003ARAS, N., BOYACI, T., & VERTER, V. (2004). The effect of categorizing returned products in remanufacturing. IIE Transactions, 36(4), 319-331. doi:10.1080/07408170490279561Aydin, R., Kwong, C. K., Geda, M. W., & Okudan Kremer, G. E. (2017). Determining the optimal quantity and quality levels of used product returns for remanufacturing under multi-period and uncertain quality of returns. The International Journal of Advanced Manufacturing Technology, 94(9-12), 4401-4414. doi:10.1007/s00170-017-1141-0Bakhrankova, K., Midthun, K. T., & Uggen, K. T. (2014). Stochastic optimization of operational production planning for fisheries. Fisheries Research, 157, 147-153. doi:10.1016/j.fishres.2014.03.018Banasik, A., Kanellopoulos, A., Claassen, G. D. H., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. (2017). Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain. International Journal of Production Economics, 183, 409-420. doi:10.1016/j.ijpe.2016.08.012Beaudoin, D., LeBel, L., & Frayret, J.-M. (2007). Tactical supply chain planning in the forest products industry through optimization and scenario-based analysis. Canadian Journal of Forest Research, 37(1), 128-140. doi:10.1139/x06-223Begen, M. A., & Puterman, M. L. (2003). Development Of A Catch Allocation Tool Design For Production Planning At Js Mcmillan Fisheries. INFOR: Information Systems and Operational Research, 41(3), 235-244. doi:10.1080/03155986.2003.11732678Benedito, E., & Corominas, A. (2010). Optimal manufacturing and remanufacturing capacities of systems with reverse logistics and deterministic uniform demand. Journal of Industrial Engineering and Management, 3(1). doi:10.3926/jiem.2010.v3n1.p33-53Bertrand, J. W. ., & Rutten, W. G. M. . (1999). Evaluation of three production planning procedures for the use of recipe flexibility. European Journal of Operational Research, 115(1), 179-194. doi:10.1016/s0377-2217(98)00166-0Björheden, R., & Helstad, K. (2005). Raw Material Procurement in Sawmills’ Business Level Strategy-A Contingency Perspective. International Journal of Forest Engineering, 16(2), 47-56. doi:10.1080/14942119.2005.10702513Bohle, C., Maturana, S., & Vera, J. (2010). A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research, 200(1), 245-252. doi:10.1016/j.ejor.2008.12.003Cai, X., Lai, M., Li, X., Li, Y., & Wu, X. (2014). Optimal acquisition and production policy in a hybrid manufacturing/remanufacturing system with core acquisition at different quality levels. European Journal of Operational Research, 233(2), 374-382. doi:10.1016/j.ejor.2013.07.017Carneiro, M. C., Ribas, G. P., & Hamacher, S. (2010). Risk Management in the Oil Supply Chain: A CVaR Approach. Industrial & Engineering Chemistry Research, 49(7), 3286-3294. doi:10.1021/ie901265nChakraborty, M., & Chandra, M. K. (2005). Multicriteria decision making for optimal blending for beneficiation of coal: a fuzzy programming approach. Omega, 33(5), 413-418. doi:10.1016/j.omega.2004.07.005LUO, C., & RONG, G. (2009). A Strategy for the Integration of Production Planning and Scheduling in Refineries under Uncertainty. Chinese Journal of Chemical Engineering, 17(1), 113-127. doi:10.1016/s1004-9541(09)60042-2Davoli, G., Gallo, S., Collins, M., & Melloni, R. (2011). A stochastic simulation approach for production scheduling and investment planning in the tile industry. International Journal of Engineering, Science and Technology, 2(9). doi:10.4314/ijest.v2i9.64006Denizel, M., Ferguson, M., & Souza, G. (2010). Multiperiod Remanufacturing Planning With Uncertain Quality of Inputs. IEEE Transactions on Engineering Management, 57(3), 394-404. doi:10.1109/tem.2009.2024506Dong, M., Lu, S., & Han, S. (2011). Production Planning for Hybrid Remanufacturing and Manufacturing System with Component Recovery. Advances in Electrical Engineering and Electrical Machines, 511-518. doi:10.1007/978-3-642-25905-0_66Dubois, D., Fargier, H., & Fortemps, P. (2003). Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research, 147(2), 231-252. doi:10.1016/s0377-2217(02)00558-1DUENYAS, I., & TSAI, C.-Y. (2000). Control of a manufacturing system with random product yield and downward substitutability. IIE Transactions, 32(9), 785-795. doi:10.1080/07408170008967438Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706French, M. L., & LaForge, R. L. (2005). Closed-loop supply chains in process industries: An empirical study of producer re-use issues. Journal of Operations Management, 24(3), 271-286. doi:10.1016/j.jom.2004.07.012Gallo, M., R. Grisi, G. Guizzi, and E. Romano. 2009. “A Comparison of Production Policies in Remanufacturing Systems,” Proceedings of the 8th WSEAS International Conference on System Science and Simulation in Engineering, ICOSSSE ‘09, pp. 334.Goodfellow, R., & Dimitrakopoulos, R. (2017). Simultaneous Stochastic Optimization of Mining Complexes and Mineral Value Chains. Mathematical Geosciences, 49(3), 341-360. doi:10.1007/s11004-017-9680-3Graves, S. C. (2010). Uncertainty and Production Planning. Planning Production and Inventories in the Extended Enterprise, 83-101. doi:10.1007/978-1-4419-6485-4_5Grillo, H., Alemany, M. M. E., Ortiz, A., & Fuertes-Miquel, V. S. (2017). Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Applied Mathematical Modelling, 49, 255-278. doi:10.1016/j.apm.2017.04.037Guan, Z., & Philpott, A. B. (2011). A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134(2), 289-299. doi:10.1016/j.ijpe.2009.11.003Guide, V. D. R. (2000). Production planning and control for remanufacturing: industry practice and research needs. Journal of Operations Management, 18(4), 467-483. doi:10.1016/s0272-6963(00)00034-6Gupta, V., & Grossmann, I. E. (2011). Solution strategies for multistage stochastic programming with endogenous uncertainties. Computers & Chemical Engineering, 35(11), 2235-2247. doi:10.1016/j.compchemeng.2010.11.013Gupta, S., and Z. Nan. 2006. “‘Multiperiod Planning of Refinery Operations Under Market Uncertainty,’ AIChE Annual Meeting.” Conference Proceedings.Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk – Definition, measure and modeling. Omega, 52, 119-132. doi:10.1016/j.omega.2014.10.004Heydari, J., & Ghasemi, M. (2018). A revenue sharing contract for reverse supply chain coordination under stochastic quality of returned products and uncertain remanufacturing capacity. Journal of Cleaner Production, 197, 607-615. doi:10.1016/j.jclepro.2018.06.206Hovelaque, V., Duvaleix-Tréguer, S., & Cordier, J. (2009). Effects of constrained supply and price contracts on agricultural cooperatives. European Journal of Operational Research, 199(3), 769-780. doi:10.1016/j.ejor.2008.08.005Hsieh, S., & Chiang, C.-C. (2001). Manufacturing-to-Sale Planning Model for Fuel Oil Production. The International Journal of Advanced Manufacturing Technology, 18(4), 303-311. doi:10.1007/s001700170070Igarashi, M., de Boer, L., & Fet, A. M. (2013). What is required for greener supplier selection? A literature review and conceptual model development. Journal of Purchasing and Supply Management, 19(4), 247-263. doi:10.1016/j.pursup.2013.06.001Jamshidi, M., & Osanloo, M. (2019). Reliability analysis of production schedule in multi-element deposits under grade-tonnage uncertainty with multi-destinations for the run of mine material. International Journal of Mining Science and Technology, 29(3), 483-489. doi:10.1016/j.ijmst.2018.04.016Jin, X., Hu, S. J., Ni, J., & Xiao, G. (2013). Assembly Strategies for Remanufacturing Systems With Variable Quality Returns. IEEE Transactions on Automation Science and Engineering, 10(1), 76-85. doi:10.1109/tase.2012.2217741Jindal, A., & Sangwan, K. S. (2016). Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors. Annals of Operations Research, 257(1-2), 95-120. doi:10.1007/s10479-016-2219-zJohnson, P., G. Evatt, P. Duck, and S. Howell. 2010. “The Derivation and Impact of an Optimal Cut-off Grade Regime Upon Mine Valuations,” Proceedings of the World Congress on Engineering 2010 Vol I.Junior, M. L., & Filho, M. G. (2011). Production planning and control for remanufacturing: literature review and analysis. Production Planning & Control, 23(6), 419-435. doi:10.1080/09537287.2011.561815Kamrad, B., & Ernst, R. (2001). An Economic Model for Evaluating Mining and Manufacturing Ventures with Output Yield Uncertainty. Operations Research, 49(5), 690-699. doi:10.1287/opre.49.5.690.10610Kannegiesser, M., Günther, H.-O., van Beek, P., Grunow, M., & Habla, C. (2008). Value chain management for commodities: a case study from the chemical industry. OR Spectrum, 31(1), 63-93. doi:10.1007/s00291-008-0124-9Karabuk, S. (2008). Production planning under uncertainty in textile manufacturing. Journal of the Operational Research Society, 59(4), 510-520. doi:10.1057/palgrave.jors.2602370Khor, C. S., Elkamel, A., & Douglas, P. L. (2008). Stochastic Refinery Planning with Risk Management. Petroleum Science and Technology, 26(14), 1726-1740. doi:10.1080/10916460701287813Kumral, M. (2004). Genetic algorithms for optimization of a mine system under uncertainty. Production Planning & Control, 15(1), 34-41. doi:10.1080/09537280310001654844Lalmazloumian, M., and K. Y. Wong. 2012. “A Review of Modelling Approaches for Supply Chain Planning Under Uncertainty,” Service Systems and Service Management (ICSSSM), 2012 9th International Conference on, pp. 197.Leiras, A., Ribas, G., Hamacher, S., & Elkamel, A. (2013). Tactical and Operational Planning of Multirefinery Networks under Uncertainty: An Iterative Integration Approach. Industrial & Engineering Chemistry Research, 52(25), 8507-8517. doi:10.1021/ie302835nLiao, H., Deng, Q., & Wang, Y. (2017). Optimal Acquisition and Production Policy for End-of-Life Engineering Machinery Recovering in a Joint Manufacturing/Remanufacturing System under Uncertainties in Procurement and Demand. Sustainability, 9(3), 338. doi:10.3390/su9030338Loomba, A. P. S., & Nakashima, K. (2011). Enhancing value in reverse supply chains by sorting before product recovery. Production Planning & Control, 23(2-3), 205-215. doi:10.1080/09537287.2011.591652Macedo, P. B., Alem, D., Santos, M., Junior, M. L., & Moreno, A. (2015). Hybrid manufacturing and remanufacturing lot-sizing problem with stochastic demand, return, and setup costs. The International Journal of Advanced Manufacturing Technology, 82(5-8), 1241-1257. doi:10.1007/s00170-015-7445-zMartinez, L. 2009. “Why Accounting for Uncertainty and Risk Can Improve Final Decision-Making in Strategic Open Pit Mine Evaluation.” Project Evaluation Conference, Melbourne, pp. 1.Matamoros, M. E. V., & Dimitrakopoulos, R. (2016). Stochastic short-term mine production schedule accounting for fleet allocation, operational considerations and blending restrictions. European Journal of Operational Research, 255(3), 911-921. doi:10.1016/j.ejor.2016.05.050Meredith, J. (1993). Theory Building through Conceptual Methods. International Journal of Operations & Production Management, 13(5), 3-11. doi:10.1108/01443579310028120Miller, W. A., Leung, L. C., Azhar, T. M., & Sargent, S. (1997). Fuzzy production planning model for fresh tomato packing. International Journal of Production Economics, 53(3), 227-238. doi:10.1016/s0925-5273(97)00110-2Mitra, K. (2009). Multiobjective optimization of an industrial grinding operation under uncertainty. Chemical Engineering Science, 64(23), 5043-5056. doi:10.1016/j.ces.2009.08.012Moghaddam, K. S. (2015). Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Systems with Applications, 42(15-16), 6237-6254. doi:10.1016/j.eswa.2015.02.010Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007MUNDI, I., ALEMANY, M. M. E., BOZA, A., & POLER, R. (2013). A Model-Driven Decision Support System for the Master Planning of Ceramic Supply Chains with Non-uniformity of Finished Goods. Studies in Informatics and Control, 22(2). doi:10.24846/v22i2y201305Mundi, M. I., Alemany, M. M. E., Poler, R., & Fuertes-Miquel, V. S. (2016). Fuzzy sets to model master production effectively in Make to Stock companies with Lack of Homogeneity in the Product. Fuzzy Sets and Systems, 293, 95-112. doi:10.1016/j.fss.2015.06.009Munhoz, J. R., & Morabito, R. (2014). Optimization approaches to support decision making in the production planning of a citrus company: A Brazilian case study. Computers and Electronics in Agriculture, 107, 45-57. doi:10.1016/j.compag.2014.05.016Olivetti, E. A., Gaustad, G. G., Field, F. R., & Kirchain, R. E. (2011). Increasing Secondary and Renewable Material Use: A Chance Constrained Modeling Approach To Manage Feedstock Quality Variation. Environmental Science & Technology, 45(9), 4118-4126. doi:10.1021/es103486sOsmani, A., & Zhang, J. (2013). Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties. Energy, 59, 157-172. doi:10.1016/j.energy.2013.07.043Paksoy, T., Pehlivan, N. Y., & Özceylan, E. (2012). Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer. Applied Mathematical Modelling, 36(6), 2762-2776. doi:10.1016/j.apm.2011.09.060Pauls-Worm, K. G. J., Hendrix, E. M. T., Haijema, R., & van der Vorst, J. G. A. J. (2014). An MILP approximation for ordering perishable products with non-stationary demand and service level constraints. International Journal of Production Economics, 157, 133-146. doi:10.1016/j.ijpe.2014.07.020Peidro, D., Mula, J., Alemany, M. M. E., & Lario, F.-C. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research, 50(11), 3011-3020. doi:10.1080/00207543.2011.588267Peidro, D., Mula, J., Jiménez, M., & del Mar Botella, M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65-80. doi:10.1016/j.ejor.2009.11.031Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-yPendharkar, P. C. (1997). A fuzzy linear programming model for production planning in coal mines. Computers & Operations Research, 24(12), 1141-1149. doi:10.1016/s0305-0548(97)00024-5Pendharkar, P. C. (2013). Scatter search based interactive multi-criteria optimization of fuzzy objectives for coal production planning. Engineering Applications of Artificial Intelligence, 26(5-6), 1503-1511. doi:10.1016/j.engappai.2013.01.001Pieter van Donk, D. (2000). Customer‐driven manufacturing in the food processing industry. British Food Journal, 102(10), 739-747. doi:10.1108/00070700010362176Pitty, S. S., Li, W., Adhitya, A., Srinivasan, R., & Karimi, I. A. (2008). Decision support for integrated refinery supply chains. Computers & Chemical Engineering, 32(11), 2767-2786. doi:10.1016/j.compchemeng.2007.11.006Poles, R., and F. Cheong. 2009. “A System Dynamics Model for Reducing Uncertainty in Remanufacturing Systems,” PACIS 2009–13th Pacific Asia Conference on Information Systems: IT Services in a Global Environment.Pongsakdi, A., Rangsunvigit, P., Siemanond, K., & Bagajewicz, M. J. (2006). Financial risk management in the planning of refinery operations. International Journal of Production Economics, 103(1), 64-86. doi:10.1016/j.ijpe.2005.04.007Radulescu, M., G. Zbaganu, and C. Z. Radulescu. 2008. “Crop Planning in the Presence of Production Quotas (Invited Paper),” Computer Modeling and Simulation, 2008.UKSIM 2008. Tenth International Conference on, pp. 549.Rajaram, K., & Karmarkar, U. S. (2002). Product Cycling With Uncertain Yields: Analysis and Application to the Process Industry. Operations Research, 50(4), 680-691. doi:10.1287/opre.50.4.680.2867Ramasesh, R. V., &

    Reusable modelling and simulation of flexible manufacturing for next generation semiconductor manufacturing facilities

    Get PDF
    Automated material handling systems (AMHS) in 300 mm semiconductor manufacturing facilities may need to evolve faster than expected considering the high performance demands on these facilities. Reusable simulation models are needed to cope with the demands of this dynamic environment and to deliver answers to the industry much faster. One vision for intrabay AMHS is to link a small group of intrabay AMHS systems, within a full manufacturing facility, together using what is called a Merge/Diverge link. This promises better operational performance of the AMHS when compared to operating two dedicated AMHS systems, one for interbay transport and the other for intrabay handling. A generic tool for modelling and simulation of an intrabay AMHS (GTIA-M&S) is built, which utilises a library of different blocks representing the different components of any intrabay material handling system. GTIA-M&S provides a means for rapid building and analysis of an intrabay AMHS under different operating conditions. The ease of use of the tool means that inexpert users have the ability to generate good models. Models developed by the tool can be executed with the merge/diverge capability enabled or disabled to provide comparable solutions to production demands and to compare these two different configurations of intrabay AMHS using a single simulation model. Finally, results from simulation experiments on a model developed using the tool were very informative in that they include useful decision making data, which can now be used to further enhance and update the design and operational characteristics of the intrabay AMHS

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Predictor Model of the Supply Chain Effectiveness based on Critical Success Factors in a Commerce Retail Industry

    Get PDF
    The business environments of the globalized economy present increasing complexity under highly variable conditions of volatility, risk, and uncertainty that exert intense pressures on retailers; some of them develop programs for the improvement of the supply chain. This paper is about determining the factors of the supply chain and the development of a structural equation model. The first section presents the background, the description of the problem and a literature search of the Supply Chain factors and their classification. The Methodology section explains the development of a questionnaire as a measuring instrument based on the identified factors. The validation of the questionnaire was with the Cronbach alpha index, and then it applied to a sample of retailers in central Mexico. Using the Partial Least Squares Structural Equation Modelling Approach, the development of a structural model identified the key driver factors related to the improvement of the Supply Chain. In results report the most important factors: 1) supplier’s quality of the goods, 2) internal factors, 3) after-sale service, and 4) road infrastructure and 5) commercial environment, for commerce retail industry in México.Os ambientes de negócios da economia globalizada apresentam complexidade crescente sob condições altamente variáveis ​​de volatilidade, risco e incerteza que exercem intensa pressão sobre os varejistas; alguns deles desenvolvem programas para a melhoria da cadeia de suprimentos. Este artigo trata da determinação dos fatores da cadeia de suprimentos e do desenvolvimento de um modelo de equação estrutural. A primeira seção apresenta os antecedentes, a descrição do problema e uma pesquisa bibliográfica dos fatores da Cadeia de Suprimentos e sua classificação. A seção Metodologia explica o desenvolvimento de um questionário como instrumento de medição baseado nos fatores identificados. A validação do questionário foi com o índice alfa de Cronbach e, em seguida, aplicado a uma amostra de varejistas na região central do México. Utilizando a Abordagem de Modelagem de Equações Estruturais de Mínimos Quadrados Parciais, o desenvolvimento de um modelo estrutural identificou os principais fatores impulsionadores relacionados à melhoria da Cadeia de Suprimentos. Nos resultados relatam os fatores mais importantes: 1) qualidade do fornecedor das mercadorias, 2) fatores internos, 3) serviço pós-venda, e 4) infraestrutura rodoviária e 5) ambiente comercial, para o setor de comércio varejista no México
    corecore