851 research outputs found

    Accurate depth from defocus estimation with video-rate implementation

    Get PDF
    The science of measuring depth from images at video rate using „defocus‟ has been investigated. The method required two differently focussed images acquired from a single view point using a single camera. The relative blur between the images was used to determine the in-focus axial points of each pixel and hence depth. The depth estimation algorithm researched by Watanabe and Nayar was employed to recover the depth estimates, but the broadband filters, referred as the Rational filters were designed using a new procedure: the Two Step Polynomial Approach. The filters designed by the new model were largely insensitive to object texture and were shown to model the blur more precisely than the previous method. Experiments with real planar images demonstrated a maximum RMS depth error of 1.18% for the proposed filters, compared to 1.54% for the previous design. The researched software program required five 2D convolutions to be processed in parallel and these convolutions were effectively implemented on a FPGA using a two channel, five stage pipelined architecture, however the precision of the filter coefficients and the variables had to be limited within the processor. The number of multipliers required for each convolution was reduced from 49 to 10 (79.5% reduction) using a Triangular design procedure. Experimental results suggested that the pipelined processor provided depth estimates comparable in accuracy to the full precision Matlab‟s output, and generated depth maps of size 400 x 400 pixels in 13.06msec, that is faster than the video rate. The defocused images (near and far-focused) were optically registered for magnification using Telecentric optics. A frequency domain approach based on phase correlation was employed to measure the radial shifts due to magnification and also to optimally position the external aperture. The telecentric optics ensured pixel to pixel registration between the defocused images was correct and provided more accurate depth estimates

    Image synthesis based on a model of human vision

    Get PDF
    Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision

    Accurate depth from defocus estimation with video-rate implementation

    Get PDF
    The science of measuring depth from images at video rate using „defocus‟ has been investigated. The method required two differently focussed images acquired from a single view point using a single camera. The relative blur between the images was used to determine the in-focus axial points of each pixel and hence depth. The depth estimation algorithm researched by Watanabe and Nayar was employed to recover the depth estimates, but the broadband filters, referred as the Rational filters were designed using a new procedure: the Two Step Polynomial Approach. The filters designed by the new model were largely insensitive to object texture and were shown to model the blur more precisely than the previous method. Experiments with real planar images demonstrated a maximum RMS depth error of 1.18% for the proposed filters, compared to 1.54% for the previous design. The researched software program required five 2D convolutions to be processed in parallel and these convolutions were effectively implemented on a FPGA using a two channel, five stage pipelined architecture, however the precision of the filter coefficients and the variables had to be limited within the processor. The number of multipliers required for each convolution was reduced from 49 to 10 (79.5% reduction) using a Triangular design procedure. Experimental results suggested that the pipelined processor provided depth estimates comparable in accuracy to the full precision Matlab‟s output, and generated depth maps of size 400 x 400 pixels in 13.06msec, that is faster than the video rate. The defocused images (near and far-focused) were optically registered for magnification using Telecentric optics. A frequency domain approach based on phase correlation was employed to measure the radial shifts due to magnification and also to optimally position the external aperture. The telecentric optics ensured pixel to pixel registration between the defocused images was correct and provided more accurate depth estimates.EThOS - Electronic Theses Online ServiceUniversity of Warwick (UoW)GBUnited Kingdo

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Representing space for practical reasoning

    Get PDF
    This paper describes a new approach to representing space and time for practical reasoning, based on space-filling cells. Unlike R n, the new models can represent a bounded region of space using only finitely many cells, so they can be manipulated directly. Unlike Z n, they have useful notions of function continuity and region connectedness. The topology of space is allowed to depend on the situation being represented, accounting for sharp changes in function values and lack of connectedness across object boundaries. Algorithms based on this model of space are neither purely region-based nor purely boundary-based, but a blend of the two. This new style of algorithm design is illustrated by a new program for finding edges in grey-scale images. Although the program is based on a relatively conventional second directional difference operator, it can detect fine texture in the presence of camera noise, produce connected boundaries around sharp corners, and return thin boundaries without "feathering. " New algorithms are presented for combining directional differences, suppressing the effects of camera noise, reconstructing image intensities from the second difference values and merging results from different scales (including suppression of spurious boundaries in staircase patterns).

    Symmetric and Asymmetric Data in Solution Models

    Get PDF
    This book is a Printed Edition of the Special Issue that covers research on symmetric and asymmetric data that occur in real-life problems. We invited authors to submit their theoretical or experimental research to present engineering and economic problem solution models that deal with symmetry or asymmetry of different data types. The Special Issue gained interest in the research community and received many submissions. After rigorous scientific evaluation by editors and reviewers, seventeen papers were accepted and published. The authors proposed different solution models, mainly covering uncertain data in multicriteria decision-making (MCDM) problems as complex tools to balance the symmetry between goals, risks, and constraints to cope with the complicated problems in engineering or management. Therefore, we invite researchers interested in the topics to read the papers provided in the book
    corecore